DESCRIPTION

A. General. This work shall consist of furnishing all labor and materials, and performing all operations necessary to install micropiles at the locations and to the required capacities indicated in the contract documents.

B. Definitions. Definitions that apply within this specification are:

Bond Breaker. A device or special treatment incorporated into a length of a micropile that will allow no load to be transferred to the soil over that length. A bond breaker also provides full lateral support of the pile over the length of the bond breaker.

Grout placed in contact with the soil using gravity pressure only will not be considered to constitute a bond breaker.

Bond Zone. The gravity-grouted, pressure-grouted, and/or post-grouted length of a micropile that provides the pile's capacity.

Design Load. The load permitted on a pile. The design load is indicated in the contract documents.

Drill Casing. Steel pipe of flush joint type used in the drilling process to stabilize the drill hole.

Duplex Drilling. A method of progressing and cleaning out a hole for installing a micropile in which the outer drill casing is progressed simultaneously with an inner drill rod string. The drill casing is cleaned using reverse circulation. Intimate contact between the soil and an outer drill casing is maintained during drilling.

Extended Length. An additional pile length resulting from a requirement that the pile capacity be achieved below a given elevation. Typically, extended lengths are prompted by a conflict with subsurface elements (e.g., underground structure, utilities, etc.) or unreliable soil strata. Bond breakers may be required.

Micropile. A small-diameter (typically less than 12 inches) friction pile formed by removing material using non-vibratory and non-displacement methods to create a cased open, cylindrical hole in the ground, which is subsequently filled with grout and steel reinforcement.

Non-production Pile. Non-production piles are piles that are not incorporated into the substructure. For example, test piles which are abandoned after testing has been completed.

Permanent Casing. A steel casing installed in the upper portion of a micropile to increase the pile's moment capacity and lateral capacity against horizontal loads.

Positive circulation or flush. A method of progressing and cleaning out a hole for a
micropile wherein drilling fluid is injected into the hole and returns upward along the outside of the drill casing.

Post grouting. A method used to increase pile capacity after the grout column has reached initial set by pumping grout at very high pressure (up to 1000 psi) through a sleeved port pipe (post grout tube).

Pressure grouting. A method used to develop pile capacity wherein pressure is applied continuously to the top of the fluid grout column through the drill head as the casing is removed from the bond zone.

Production pile. A pile which will be incorporated into the structure's foundation.

Recirculation. A method of handling drilling fluid where the fluid coming back out of the hole is captured in a pan and reused.

Reverse Circulation. A method of cleaning the inside of the drill casing. Drilling fluid is circulated down through the drill rods and returns upwards through the inside of the drill casing to flush the drill casing clean.

Static Pile Load Test. A test to verify design assumptions and the adequacy of the contractor’s installation methods.

Telltale. A simple mechanical device, a.k.a. “strain rod,” that is used to measure deflection in concrete or steel. The device consists of a small-diameter steel rod that is fixed at a selected point along or within the pile. This rod is encased, and free to move, in a slightly larger pipe or tube which extends up to the pile top. Dial gauges are used to measure the deflections at the top of the rod.

Tremie Grouting. A method used to place grout in a wet hole. A grout tube is placed to the bottom of the drill hole. While keeping the tube opening submerged in the grout, grout is pumped into the hole, causing the drilling fluid to be displaced.

MATERIALS

For all steel remaining as a permanent part of the work, all Buy America provisions shall apply.

A. Drill Casing. Provide drill casing consisting of flush joint type steel pipe of appropriate thickness to withstand the stresses associated with advancing it into the ground, in addition to the stresses due to hydrostatic and earth pressures.

B. Drill Casing/Pipe used as Reinforcement. Provide steel drill casing/pipe used as reinforcement conforming to ASTM A252, with the exception that spiral welded pipe shall not be allowed. Mill secondaries cannot be used for reinforcement. Approval of the steel drill casing/pipe used as reinforcement shall be done in accordance with the following procedure:

1. **Requirements for Micropile Structural Casing.** Structural casing that is installed in coupled (spliced) sections shall meet the following requirements:
a. The casing shall be flush joint and the pipe joint shall be completely shouldered and with no stripped threads.

b. All welded connections shall be performed by a NYSDOT Certified Welder in conformance with NYSDOT Steel Construction Manual (SCM), the approved Welding Procedure Specification (WPS) and the Approved Welding Procedure Qualification Record (WPQR). Welds shall be full penetration welds for full structural load capacity. For piles with bending or tension stress, welds shall be Ultrasonic (UT) or Radiograph Tested (RT). These requirements do not apply to minor welding that does not carry structural load, such as cutting teeth and tacking on bearing plates.

c. If significant tension loads are being considered, the Department will require the Contractor to provide data demonstrating the adequacy of the proposed detail.

d. The design shall limit the maximum yield stress of steel (Fy) to 87 ksi.

C. Bar Reinforcement. Provide Bar reinforcement meeting the requirements of §709-01 Bar Reinforcement, Grade 60, or continuously threaded "Uncoated High-Strength Steel Bars for Prestressing Concrete" - ASTM A722.

D. Grout. Provide a pumpable grout consisting of, as a minimum, Portland Cement - Type 2 and Water meeting the following Specification requirements:

<table>
<thead>
<tr>
<th>Material</th>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement, Type 2</td>
<td>§701-01</td>
</tr>
<tr>
<td>Grout Sand</td>
<td>§703-04</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>§711-10</td>
</tr>
<tr>
<td>Water</td>
<td>§712-01</td>
</tr>
</tbody>
</table>

The use of Grout Sand and Fly Ash in the mix is optional. Field sampling and testing shall be done in accordance with the current procedural directives of the Materials Bureau of the Office of Technical Services.

E. Centralizers and Spacers. Provide centralizers and spacers fabricated from schedule 40 PVC pipe, tube, steel, or material non-detrimental to the reinforcing steel. Wood shall not be used.
CONSTRUCTION DETAILS

Progress all micropiles using steel drill casing.

The Contractor performing the work described in this specification shall submit proof of the following:

1. Two projects in the past two years on which the Contractor has successfully installed micropiles or soil tiebacks using non-displacement methods, under similar site conditions to those indicated in the contract documents.

2. The proposed On-Site Supervisor for this work having supervised the successful installation of micropiles or soil tiebacks on at least two projects in the past two years.

A. Submittals. Submit the method-of-installation information outlined below to the Engineer for approval by the Deputy Chief Engineer Structures (DCES). The DCES will require 20 work days to review the submittal. Do not begin work prior to receiving approval by the DCES. Approval of the installation method by the DCES does not constitute a guarantee of acceptable pile installations. Acceptable installations are the responsibility of the Contractor.

Include in the submittal:

1. Provide information on the proposed steel drill casing/pipe used as reinforcement.

2. Details of equipment for pile installation.

3. Details of procedures for pile installation including, but not limited to, installation sequence and the approximate time required for each sequence step.

4. Procedures for advancing through boulders and other obstructions.

5. Procedures for containment of drilling fluid and spoil, and disposal of spoil.

6. Where applicable, drawings that show the specific work can be performed under limited headroom conditions and as close to obstructions as site conditions warrant, to install the piles at the locations and to the depths indicated in the contract documents. Provide information on the length of the casing sections to be used, as dictated by the length of the drill mast and by the available overhead clearance, and the resulting location of joints.

7. Procedures and equipment for placing grout.
 a. Prepare the mix design for the grout and obtain documentation from an independent laboratory showing the following:
 i. The mix design conforms to the submitted mix and meets the strength requirements specified in the contract documents.
 ii. The compressive strength of the mix, tested at 3, 7, 14, and 28 days.
 iii. The specific gravity of the mix.
 b. Identify a method for monitoring quality control of the mix. At a minimum, the Contractor shall use a Baroid Mud Balance per American Petroleum Institute (API)
ITEM 551.9930XX17 – MICROPILES (DESIGN PROVIDED)

Recommended Practice (RP) 13B-1: Standard Procedure for Testing Water-Based Drilling Fluids, to check the specific gravity of the mixed grout prior to placement of the grout into each micropile.

c. Provide pressure gages capable of measuring the actual grout pressures used and such that actual pressure readings are within the middle third of the gage.

8. Details of post-grouting equipment and procedures, including the method, sequence of operations, and equipment required.

9. Layout drawings showing the proposed sequence of pile installation. Coordinate this sequence with the proposed phasing and scheduling.

B. Drilling and Excavation. Advance the hole using a duplex drilling method. Do not drill or flush ahead of the drill casing by more than 1 foot. Perform drilling and excavation in such a manner to prevent collapse of the hole. Use of bentonite slurry is not permitted. Use of polymer slurry to remove cuttings from the cased hole shall be approved by the Engineer.

If obstructions are encountered during excavation for a pile, progress through them by means of coring or a tricone roller bit. Use of drop-type impact hammers and blasting are not permitted. Use of a down-the-hole hammer must be approved by the DCES.

Control the procedures and operations so as to prevent mining, damage, or settlement to adjacent structures, tunnels, utilities, or adjacent ground. If any mining, damage, or settlement occurs, halt operations. Provide a written plan to the Engineer for review with procedures to avoid reoccurrence. Resume work only after the Engineer has approved the plan in writing. Repair all damage and settlement at no additional cost to the State.

Control the procedures and operations so as to prevent the soil at the bottom of the hole from flowing into the hole at all times during installation and cleaning out. Monitor the rate of fluid flow used to progress the holes.

Control drilling fluid and dispose of spoil in accordance with the approved procedure.

Do not progress a hole, pressure-grout, or post-grout, within a radius of 5 pile diameters or 5 feet, whichever is greater, of a micropile until the grout for that micropile has set for 24 hours or longer if a retarder is used.

C. Piles with Extended Lengths. Install piles with extended lengths at the locations shown on the plans. The specified ultimate tension and compression resistance derived from the soil and/or bedrock will be achieved below the elevations indicated in the contract documents.

D. Reinforcement and Post Grout Tube Placement. Provide centralizers sized to position the reinforcement within 3/8 inch of plan location from the center of the pile; sized to allow grout tremie pipe insertion to the bottom of the drillhole; and sized to allow grout to freely flow up the drill hole and casing and between adjacent reinforcing bars. Centralizers, spaced not to exceed 10 feet, must be used to center the reinforcement for its entire length. Securely attach the centralizers to withstand installation stresses. Do not drop, but lower the steel reinforcement to
its specified location in the hole. If a post grout tube is used, attach it to the steel reinforcement prior to lowering it.

E. Grout Placement and Casing Removal. Provide quality control of the mix by monitoring grout quality. Measure grout consistency by determining grout density per API Recommended Practice (RP) 13B-1 by the Baroid Mud Balance Test at a frequency, of at least one test per micropile, and provide the information to the inspector.

The Engineer will perform quality assurance of the mix in accordance with the current procedural directives of the Materials Bureau.

Place grout by means of a tremie pipe from the bottom of the pile upward. Record the initial volume of grout required to fill the hole. Record grouting pressure and volume of grout being pumped into the pile during pressure grouting. Upon completion, maintain the grout level at or above the pile cut off elevation until the grout has set.

Locate the grout pressure and volume measuring gages at the pile installation site so that they are accessible and legible to the inspector.

F. Construction Tolerances. Install the piles so that the center of each micropile does not vary from the plan location by more than 3 inches. Do not allow the micropile to vary from the vertical or established batter by more than 1/4 inch per foot, as measured above ground.

Cut off the top of the pile at the elevation indicated in the contract documents.

G. Pile Acceptance Criteria

1. Pile meets Construction Tolerance criteria.
2. Pile was installed in accordance with the approved submittal.
3. Pile is not damaged.
4. Pile was installed using the same method, grout volumes, and pressures as the accepted test pile, if applicable.

H. Unacceptable Piles. Unacceptable piles are piles which do not meet the acceptance criteria identified in Paragraph G above.

Submit to the Engineer a written plan of remedial action, for approval by the DCES, showing how to correct the problem and prevent its reoccurrence. Repair, augment, or replace the unacceptable pile in accordance with the approved remedial plan at no additional cost to the State.

METHOD OF MEASUREMENT

This work will be measured as the number of feet, measured to the nearest foot, of acceptable micropiles installed.
ITEM 551.9930XX17 – MICROPILES (DESIGN PROVIDED)

BASIS OF PAYMENT
The unit price bid shall include the cost of furnishing all labor and materials necessary to satisfactorily complete the work. Micropiles that fail to meet the acceptance criteria will be rejected and no payment will be made for these piles. Furnishing equipment for installing micropiles will be paid for separately under the appropriate item.

NOTE: XX denotes casing/pipe size.

<table>
<thead>
<tr>
<th>Item 551.9930XX17, (XX) =</th>
<th>Common Casing/Pipe Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>5.5 inches</td>
</tr>
<tr>
<td>06</td>
<td>6 inches</td>
</tr>
<tr>
<td>07</td>
<td>7 inches</td>
</tr>
<tr>
<td>08</td>
<td>8 inches</td>
</tr>
<tr>
<td>09</td>
<td>9.625 inches</td>
</tr>
<tr>
<td>10</td>
<td>10.75 inches</td>
</tr>
<tr>
<td>12</td>
<td>12.75 inches</td>
</tr>
</tbody>
</table>