RODEL 1

INTERACTIVE ROUNDBOOTH DESIGN

Joint Copyright (c) Rodel Software Ltd and Staffordshire County Council.

Modified with permission for U.S. use by the NYSDOT
September 6th, 2002

Issue 1.00
DISCLAIMER

The user of RODEL, for the solution of an engineering problem, is in no way relieved of his responsibility for the correctness of the solution.

The views and opinions expressed in this Manual are those of the Author and are not necessarily those of Staffordshire County Council.
CONTENTS

1. INTRODUCTION 1
2. USING THE MANUAL 2
3. PROGRAM STRUCTURE 3
4. THE MENU SCREEN 4
5. THE PRINTER SCREEN 6
6. THE MAINSCREEN 7
7. THE DIRECT FLOW SCREEN 15
8. THE GEOMETRY SCREEN 16
9. THE STATISTICS SCREEN 17
10. THE ECONOMICS SCREEN 18
11. FLOW DEFINITION 19
12. MODE 1 OPERATION 22
13. MODE 2 OPERATION 25
14. EFFECTIVE GEOMETRY 28
15. RATIO OF FLOW/CAPACITY 33
16. CONFIDENCE LEVELS 35
17. RODEL AND ARCADY 37
18. RODEL AND OBSERVATIONS 38
19. SAFETY 39
20. ERRORS 42
21. OUTPUT DEFINITIONS 43
22. INSTALLATION 44
1. INTRODUCTION

RODEL is a fully interactive program for aiding roundabout design.

The purpose of RODEL is to:

1. Improve design quality.
2. Drastically reduce design time.
3. Reduce land and service costs
4. Allow rapid exploration of many options especially with respect to safety.
5. Derive the optimum layout within the conflicting constraints of cost, delay and safety.

Rather than simply checking designs after they have been drawn, RODEL generates geometry prior to scheme drawing. This avoids the time consuming practice of repeated drawing and checking.

The program operates in two modes:

MODE 1

Sets of entry geometry are generated for each approach. Each set is equivalent to the input value of queue, delay or RFC (Ratio of Flow to Capacity). The set that best fits the constraints is selected for each approach.

MODE 2

The simultaneous display of input and output allows the selected geometry to be repeatedly modified and refined. The resulting queues and delays are displayed every 1 or 2 seconds enabling the designer to develop a "feel" for the design and to converge on an optimum layout within the constraints.

Flow data is stored for the AM, PM and OP (off-peak) periods, and may be input directly for the whole period or synthesised from coarse flow data for the whole or part of the period. The results from RODEL are for a specified Confidence Level, consequently the risks involved when trading-off delays, costs and safety are clearly known. This leads to more robust designs at little extra cost. The results can be specified for the whole period or for a sub-period. Delay costs are calculated for the AM, PM, OP, daily and annual periods, enabling cost/benefit evaluation of options.
2 USING THE MANUAL

RODEL is an interactive program and chapters 3 - 10 describing the various screen displays and their operation are intended to be used as an interactive tutorial at the computer, to quickly learn how to 'drive' RODEL.

Beyond chapter 10 the manual provides a fuller explanation of the Input and Output. Particular care needs to be given to understanding the Flow Period and the Results Period in the Mainscreen.

RODEL provides extra flexibility and power, but the cost is the need to fully understanding Chapters 11-18 before any reliance is placed on the output. Chapter 11 on FLOW DEFINITION is very important, and chapter 16 on CONFIDENCE LEVEL is fundamental to understanding and using RODEL effectively.

The manual is to be used in conjunction with TD 16/93, 'The Geometric Design of Roundabouts'. LR 942 'The Traffic Capacity of Roundabouts' is also useful for geometric definitions.
3. PROGRAM STRUCTURE

RODEL contains seven Screen Displays. The program structure below shows the connections between the screens.

```
MENU ←→ PRINTER

GEOMETRY ←→ MAINSCREEN ←→ DIRECTFLOWS

STATISTICS ←→ ECONOMICS
```

Turn your keyboard Caps Lock on. Enter ‘rodel’ start.

Upon entry into RODEL the Menu Screen is displayed containing the scheme names.

The Printer Screen contains the printer settings.

The Mainscreen holds the geometric and flow input and displays the main output.

The Geometry Screen displays the sets of entry geometry derived by Mode 1.

The Direct Flow Screen holds detailed flow input that is used in preference to the coarser flow data in the Mainscreen.

The Statistics Screen displays the detailed secondary results.

The Economics Screen displays the full delay costs.

All the screens are controlled by the Fkeys (function keys), the Esc key and the PgUp and PgDn keys. The Fkey functions are displayed on the bottom line of each screen.

The Tab key moves the cursor to the next field. Shift and Tab moves the cursor to the previous field. The four cursor keys move the cursor within each field.

The Esc key saves the current screen data and returns to the previous screen, or exits RODEL from the Menu Screen.
4. THE MENU SCREEN

The Menu contains the scheme names. A free line in the Menu is indicated by SCHEME NAME that can be overtyped with the name of a new scheme.

The Menu has twelve lines per page and twelve pages. The "current" scheme is shown in highlighted green.

The Menu is controlled by the Fkeys (Function Keys) and by the Esc, PgUp and PgDn keys. The use of each key is displayed at the bottom of the Menu Screen.

The following operations can be performed in the Menu.

1. Change line
2. Change page
3. Add a page
4. Create a Scheme
5. Edit a Scheme
6. Copy a Scheme
7. Erase a Scheme
8. Alter the printer settings
9. Exit Menu

1. Changing Line

Press F7 = line up
Press F8 = line down

2. Changing Page

Press PgUp = page back
Press PgDn = page forward

3. Add a Page

Hold down Ctrl then key F1 once

4. Create a New Scheme

1 Move to the chosen line and page.
2 Type in the name of the new scheme.
3 Key F1 or F2 to select Mainscreen Mode 1 or Mode 2
4 Enter F3, F4, F5 or F6 to specify number of legs.
5. Edit a Scheme

1. Move to the page containing the scheme name.
2. Move to the scheme name.
3. Enter F1 or F2 to select Mainscreen Mode 1 or Mode 2
4. Edit the data in Mainscreen

(See Chapter 6 THE MAINSCREEN)

6. Copying a Scheme

1. Move to the scheme to be copied.
2. Press F4 to switch on 'COPY'
3. Move to the destination line/page.
4. Press F4 to copy.
5. Repeat (3) and (4) if further copies are required.
6. Press Esc to switch off 'COPY'.

7. Erasing a Scheme

1. Press F6 to switch on 'ERASE'.
2. Move the highlight to the scheme to be erased.
3. Press F6 to erase.
4. Repeat 2 and 3 if further erasing is required.
5. Press Esc to switch off 'ERASE'.

8. Printer Settings

1. Hold down Ctrl and press F9 once to display the printer settings.
2. Edit top margin and side margin settings to suit printer.
3. Press Esc to return to Menu.

(See Chapter 5 THE PRINTER SCREEN)

9. Exit Menu

Press Esc to leave Menu and exit RODEL.
5. THE PRINTER SCREEN

The Printer Screen is used to define the size of the top and side margins required for printing.

The Printer Screen is accessed from the Menu by keying Ctrl and F9. The top and side margin settings can be edited to suit the printer/paper size.

The various screens that can be printed differ slightly in size, but the maximum size is 34 rows x 80 columns. *To print 8.5 x 11, use Top margin = 5 lines, and side margin = 2 columns.*

The Esc key saves the printer settings and returns to the Menu.
6. THE MAINSCREEN

A scheme is created or selected in the Menu by moving the Menu line highlight to the scheme name and keying either F1 or F2 to display Mainscreen Mode 1 or Mode 2.

The Fkeys displayed at the bottom of Mainscreen control the following operations.

1. Change Mode
2. Change Flow Definition
3. Change Peak Period
4. Reverse Turning Flows
5. Return to Menu
6. Change Factor Type
7. Run RODEL

After RODEL has been run and the results displayed, the following additional operations are controlled by the Fkeys.

8. Display Statistics
9. Display Economics
10. Display Geometry (mode 1 only)
11. Print Mainscreen

1. Change Mode

Mode 1 has the four options 1a 1b 1c and 1d.

Mode 2 has a single option.

Lines 1 and 2 of field 1 vary between options.

F1 Change the Mode option rotationally.
(ie) 1a / 1b / 1c / 1d / 2 / 1a / etc

(See Chapters 12 & 13 on MODE OPERATION)

2. Change Flow Definition

RODEL uses either the detailed flows stored in the Direct Flow Screen or derives detailed flows from the coarser synthetic flow data stored in Mainscreen.

F2 Switches between the Direct and Synthetic options.
F7 Displays the Direct Flows in the Direct Flow option.

(See Chapter 11 FLOW DEFINITION)
3. Change Peak Period

 Flow data is stored for the AM, OP and PM periods
 F3 Change Flow data in fields 4 to 9 and change the period rotationally.
 (ie) AM / OP / PM / AM / OP / ... etc.

4. Reverse Turning Flows

 Ctrl and F3 Reverses the Turning Flows and alters the Flow Peak
 (ie) AM to AMR; OP to OPR; PM to PMR.
 or AMR to AM; OPR to OP; PMR to PM.

 The AMR, OPR and PMR flows are not saved and can be modified
 without changing the original AM, OP or PM flows.

5. Return to Menu

 Esc Return to menu saving Mainscreen data.

6. Change Factor Type

 F4 Switches field 6 between 'FLOF' and 'CAPF'
 FLOF factors the flows on each leg
 CAPF factors the capacity of each leg

7. Run RODEL

 F10 Run RODEL.

 After the Mainscreen results have been displayed the following
 additional operations are controlled by the Fkeys.

8. Display Statistics

 F6 Display Statistics Screen.

9. Display Economics

 F8 Display Economics Screen.

10. Display Geometry (Mode 1 only)

 F5 Display Geometry Screen.

11. Print Mainscreen

 F9 Print Mainscreen.
THE MAINSCREEN INPUT FIELDS

The Mainscreen is divided into three bands. The upper two are subdivided into the 9 input fields, and the lower band is subdivided into the 2 output fields. The Tab key moves the cursor to the next field. Shift and Tab moves the cursor to the previous field. The four cursor keys move the cursor within the field.

The legs are named and/or numbered in a clockwise direction. All input must also be counter-clockwise. For a new scheme a set of dummy data is displayed in the Mainscreen input fields to be edited by the user.

The input for Mode 1 and Mode 2 is the same except for the geometric data in field 1.

INPUT FIELD 1

GEOMETRY

Field 1 contains 7 lines of data. Lines 3 to 7 contain geometric data common to both Modes, but lines 1 and 2 vary between Modes.

Mode 1

<table>
<thead>
<tr>
<th>line 1</th>
<th>TARGET PARAMETER</th>
<th>(four options)</th>
</tr>
</thead>
<tbody>
<tr>
<td>line 2</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>line 3</td>
<td>Half width V</td>
<td>(meters)</td>
</tr>
<tr>
<td>line 4</td>
<td>Entry radius R</td>
<td>(meters)</td>
</tr>
<tr>
<td>line 5</td>
<td>Entry angle PHI</td>
<td>(degrees)</td>
</tr>
<tr>
<td>line 6</td>
<td>Diameter D</td>
<td>(meters)</td>
</tr>
<tr>
<td>line 7</td>
<td>Grade Seperation GS</td>
<td>(0 or 1)</td>
</tr>
</tbody>
</table>

Mode 2

line 1	Entry width E	(meters)
line 2	Flare length L'	(meters)
line 3	Half width V	(meters)
line 4	Entry radius R	(meters)
line 5	Entry angle PHI	(degrees)
line 6	Diameter D	(meters)
line 7	Grade Seperation GS	(0 or 1)

The geometric data is required for Kimbers capacity equations and is defined in LR 942 'The Traffic Capacity of Roundabouts' and in FIG.1 GEOMETRIC DEFINITIONS.

The grade separation indicator on line 7 is 0 for at grade and 1 for grade separation.
Mode 1 uses the Target Parameters to generate up to 40 pairs of E and L' (EL' pairs) for each leg. Any pair will produce the specified Target delay, queue or RFC.

INPUT FIELD 2 CONTROL DATA

The Control Data contains seven parameters.

1. **TIME PERIOD** (minutes)

 This is the total time to be modelled. There is no restriction on the length of the Time Period.

2. **TIME SLICE** (minutes)

 The Time Period is divided into equal time intervals called Time Slices. During each Time Slice the traffic flows and capacity are assumed constant, but can vary between Time Slices.

The maximum number of Time Slices is 120

The minimum number of Time Slices is 4

The Time Slice must divide exactly into the Time Period.

3. **RESULTS PERIOD** (minutes)

 The results produced by RODEL are for the specified Results Period. This may be the whole Time Period or for a sub-period.

The Results Period has two values. The first specifies the start and the second the end of the Results Period. (ie) For a 90 minute Time Period we can have:

 Results Period = 0 90, then results are for whole 90 minutes

 Results Period = 15 75, then results are for middle 60 minutes
The Results Period values must be a multiple of the Time Slice.

4. **TIME COST** (pence/minute)

This is the value of time for the flow year under consideration. The COBA and TAMS manuals provide the values by year. The Time Cost is used to calculate the Delay Costs for the Results Period, and also the daily and annual costs in the Economics Screen.

5. **FLOW PERIOD** (minutes)

The Turning Flows displayed in Input Field 5 are the flows during the Flow Period. (ie) For a 90 minute Time Period:

Flow Period = 0 90 Turning Flows = flows/90 minutes.
Flow Period = 30 60 Turning Flows = flows/30 minutes.

If the Flow Period is changed, a prompt message is displayed reminding the user to alter the Turning Flows to match the new Flow Period. The Flow Period values must be multiples of the Time Slice.

6. **FLOWTYPE** (PCU or VEH)

The Turning Flows in field 5 are interpreted as pcu's or vehicles as specified by the Flow Type.

7. **FLOW PEAK** (AM, OP or PM)

For each scheme, flow data can be stored for the AM, OP and PM periods. The Flow Peak specifies the current period displayed.
F3 changes both the Flow Peak and the Flow data in (fields 4 to 9). If Ctrl is held down and F3 pressed once the Turning Flows in field 5 are reversed, and the Flow Peak display is altered from AM to AMR, PM to PMR etc. The same process reverses back to the original flows, even if the reversed flows have been edited.

INPUT FIELD 3 LEG NAMES

The names of each leg is entered in Field 3. The first name is for Leg 1, and the subsequent names entered represent the leg names of the roundabout in a counter-clockwise order.

INPUT FIELD 4 PCUFACTORS

RODEL uses both pcus and vehicles to derive queues and delays. The Pcu Factor is therefore needed irrespective of the Flow Type.
PCU FACTOR = 1 + (vehicles over 4 wheels / total vehicles)

INPUT FIELD 5 TURNING FLOWS (VEH or PCU / Flow Period)

Field 5 contains the Turning Flows for each leg. They are interpreted as Pcus or Vehicles as specified by the Flow Type. The legs are numbered in a counter-clockwise direction. The order of input is:

LEG 1 1st exit, 2nd exit Uturn
LEG 2 1st exit, 2nd exit Uturn

.

LEG n 1st exit, 2nd exit Uturn

The Turning Flows are the flows during the Flow period. For the Direct Flow option, the Turning Flows (and Flow Period) must be for the whole Time Period. If the flows are to be synthesised then the Turning Flows (and Flow Period) can be for the whole or part of the Time Period. (see Chapter 11 FLOW DEFINITION)

INPUT FIELD 6 FACTORS

Field 6 has two options for factoring either the Turning Flows or Capacity on each leg. F4 switches between the capacity and flow factor options. The field header is also changed between 'FLOF' for Flow Factor and 'CAPF' for capacity factor.

INPUT FIELD 7 CONFIDENCE LEVEL

Queues and delays can only be predicted for a given confidence level. (Arcady has an implicit confidence level of 50%). RODEL estimates queues and delays for the specified Confidence Level (50% to 99%) (See Chapter 16 CONFIDENCE LEVEL) NYSDOT uses 85%

INPUT FIELD 8 FLOW RATIOS

When the traffic flows per Time Slice are to be synthesised from the coarser Turning Flow data, Field 8 displays the Flow Ratio. The Flow Ratio is used in conjunction with the Flow Times to reshape the Turning Flows (the average flows during the Flow Period) into a flow profile that rises and falls in a similar manner to peak period traffic. The Flow Ratio has three values that define the ratio between the flow levels at the three corresponding Flow Times.

(see Chapter 11 - FLOW DEFINITION)

If the flows per Time Slice are to be input directly, then Field 8 is replaced by the Direct Flow Field, allowing access to the Direct Flow
Screen by keying F7. (see Chapter 14 - FLOW DEFINITION)

INPUT FIELD 9 FLOWTIMES (minutes)

When the flows per Time Slice are to be synthesised, Field 9 contains the Flow Times that are used with the Flow Ratios to produce the Flow Profile from the Turning Flows. (Chapter 14 - FLOW DEFINITION)

When the flows / Time Slice are to be input directly Field 9 is replaced by the Direct Flow Field. (see Chapter 14 - FLOW DEFINITION)

THE MAINSCREEN OUTPUT FIELDS

The Mainscreen output is displayed in the bottom section of the screen, and has two fields.

OUTPUT FIELD 1

The output is for the specified Results Period. Leg 1 output is displayed in column 1, Leg 2 output is displayed in column 2 etc.

The output varies depending on the Mode and Option.

Mode1a

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average delay</td>
<td>(minutes/vehicle)</td>
</tr>
<tr>
<td>2</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Minimum entry width</td>
<td>Emin (metres)</td>
</tr>
<tr>
<td>4</td>
<td>Maximum flare length</td>
<td>L'max (metres)</td>
</tr>
<tr>
<td>5</td>
<td>Maximum entry width</td>
<td>Emax (metres)</td>
</tr>
<tr>
<td>6</td>
<td>Minimum flare length</td>
<td>L'min (metres)</td>
</tr>
</tbody>
</table>

Lines 3 and 4 are the EL' pair for the minimum E. Lines 5 and 6 are the EL' pair for the maximum E. (ie each extreme of the sets of E-L' pairs).

Mode1b

As Mode1a except Line1 displays the maximum delay (mins/vehicle).

Mode1c

As Mode1a except Line1 displays the maximum queue (vehicles).

Mode1d

As Mode1a except Line1 displays the maximum ratio of flow to capacity for any Time Slice during the Results Period. (Max RFC) Line 2 displays the average delay / vehicle (mins) for comparison with
the maximum RFC.

Mode2

<table>
<thead>
<tr>
<th>Line</th>
<th>Metric</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>Flow per leg</td>
<td>vehicles/results period</td>
</tr>
<tr>
<td>Line 2</td>
<td>Capacity per leg</td>
<td>vehicles/results period</td>
</tr>
<tr>
<td>Line 3</td>
<td>Average delay</td>
<td>minutes/results period</td>
</tr>
<tr>
<td>Line 4</td>
<td>Maximum delay</td>
<td>minutes/results period</td>
</tr>
<tr>
<td>Line 5</td>
<td>Average Queue</td>
<td>vehicles/results period</td>
</tr>
<tr>
<td>Line 6</td>
<td>Maximum Queue</td>
<td>vehicles/results period</td>
</tr>
</tbody>
</table>

OUTPUT FIELD 2

Output field 2 is the same for Mode1 and Mode2 and displays the total delays (hrs) and the total delay costs of all traffic for the Results Period.
7. THE DIRECT FLOW SCREEN

If the flows per Time Slice are to be input directly, rather than synthesised from the Turning Flows, then the F2 key is used in Mainscreen to switch from Synthetic to Direct Flow. Fields 8 and 9 in Mainscreen change from Flow Ratios and Flow Times to Direct flow. F7 then displays the Direct Flow Screen.

The flow for each leg is input into each column of the Direct Flow Screen (leg1 in column 1, leg2 in column 2 etc. - legs numbered counter-clockwise).

The flows per Time Slice are interpreted as pcu's or vehicles as specified by the Flow Type in Mainscreen.

For the Direct Flow option the Flow Period and the Turning Flows in field 5 of Mainscreen must be for the whole Time Period.

The total flows/leg input in the Direct Flow Screen must equal the total Turning Flows/leg in Mainscreen, as the Turning Flows in Mainscreen define the turning proportions to be applied to the Direct Flows.

If the number of Time Slices exceeds the screen size, F8 will scroll the Direct Flow Screen data.

F9 prints the screen.

Esc returns to Mainscreen.

The Fkey functions are displayed on the bottom line.
8. THE ENTRY GEOMETRY SCREEN

The Entry Geometry Screen is displayed by keying F5 after running Model of Mainscreen.

The Entry Geometry Screen displays the whole set of EL' pairs for Leg 1. PgUp or PgDn changes the leg displayed.

EL' pairs should be generated for the AM and PM periods, and the worst case from either period printed for each leg.

The EL' pair that best fits the site constraints is then selected from the range of EL' pairs for each leg in turn and the initial layout sketched.

F9 prints the screen.

Esc returns to the Mainscreen.

The Fkey functions are displayed on the bottom line of the screen.
9. THE STATISTICS SCREEN

The Statistics screen can be displayed by F6 after Model 1 or Mode2 of Mainscreen has run, and displays the detailed results for each Time Slice for a single leg. PgUp or PgDn changes the leg display.

If the number of Time Slices exceeds the screen size, F8 scrolls the data.

For each leg the following data is displayed:-

1. Arrival Flow
 The total arrival flow in vehicles during each Time Slice.

2. Capacity
 The capacity in vehicles during each Time Slice.

3. Ratio of Flow to Capacity (RFC)
 The ratio of flow/capacity for each Time Slice.

4. End Queues
 The queue in vehicles at the end of each Time Slice.

5. Total Delay
 The summated delay in minutes of all traffic during each Time Slice.

6. Exit Flow
 The total exit flow in vehicles during each Time Slice.

F9 prints the screen.

Esc returns to the Mainscreen.

The Fkey functions are displayed on the bottom line of the screen.
10. THE ECONOMICS SCREEN

The Mainscreen displays the total delay and delay costs experienced by all traffic for a single Results Period. However the Economics Screen displays the daily or annual costs for any or all of the AM, OP and PM Results Periods.

The Economics Screen can be displayed for both Mode1 and Mode2 by keying F8 after the Mainscreen results have been displayed.

The number of periods per day and the number of days per year are specified for each period. The annual delay costs for each period, and the grand total delay costs can then be displayed by keying F10.

If only one period is run (ie the PM) then the Economics Screen produces costs for that period only. If other periods are subsequently run, they are added into the Economics Screen. The Economics Screen results are reset to zero by keying F1.

F9 prints the screen

Esc saves the input data and returns to the Mainscreen.

The Fkey functions are displayed on the bottom line of the screen.
11. FLOW DEFINITION

Traffic flows during a typical peak period rise and fall. The capacity of an approach not only depends on its geometry but also on the opposing circulating flow on the roundabout. When the entry flow is greatest (the peak within the peak period) the opposing circulating flow is also greatest. Consequently the capacity is lowest when the traffic demand is greatest.

This rise and fall is simulated by dividing the Time Period into equal time increments called Time Slices. The flow and capacity is assumed constant during each Time Slice, but will vary between Time Slices according to the rise and fall in the peak period traffic.

If the flows are known for each Time Slice, they can be input directly into the Direct Flow Screen (Direct Flows).

Alternatively the flows per Time Slice can be synthesised from the coarser Turning Flows in input Field 5 of Mainscreen (Synthetic Flows).

Synthetic Flows

The rise and fall in the approach flows for a typical peak period is shown for a single approach in FIG 1 THE FLOW PROFILE.

![FIG. 1 THE FLOW PROFILE](image)

The flow level 'A' is the average approach flow level during the Flow Period (the sum of the Turning Movements for the approach). This flow level is reshaped into the Flow Profile. The total approach flows during the Flow Period are unchanged by this reshaping.

The time T0 to T4 is the Time Period. The Flow Times T1, T2 and T3 define the times at which the Flow Profile starts to rise or fall.
The Flow Ratios R1, R2 and R3 define the ratio between the average flow level ‘A’ and the flow levels at the Flow Times T1, T2 and T3. After the approach flows have been reshaped, the flow profile is divided into equal Time Slices (during which the flows are assumed constant) to produce the synthesised flows per Time Slice. (see FIG. 2 SYNTHESISED FLOWS)

The greater the number of Time Slices the longer RODEL takes to run. Time Slices of 15 minutes are suitable for converging on a layout, with a Time Slice of 5 minutes sufficiently short for final estimation of queues and delays.

The number of Time Slices can be a minimum of 4 (1/4 of the Time Period) and a maximum of 120.

The synthesis of flows in RODEL has been generalised and any values can be used for the Flow Ratios. (ie R2 can be less than R1 and R3 etc).

The flows are synthesised for the whole Time Period even when the Flow Period (and Turning Flows) are for a sub-period.

During the Flow Period the sum of the synthesised flows per leg is equal to the sum of the Turning Flows per leg.

Notes on synthesised flows

The Time Slice must be a factor of the Time Period.

The Flow Period and Result period values must be multiples of the Time Slice.

The Turning Flows are the flows during the Flow Period. If the Flow Period is altered then the Turning Flows must be altered to match the Flow Period. (A prompt reminds the user to update the Turning Flows if the Flow Period is altered).
To model the peak hour it is sufficient to have a 60 minute time period. The assumption that the queue is zero at the beginning of the hour is a very good assumption, except when the queues and delays are extremely large. Alternatively a longer time period can be used, typically 90 minutes, with the Flow Period and the Results Period chosen for the middle 60 minutes. (i.e.)

<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Slice</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Results Period</td>
<td>0-60</td>
<td>15-75</td>
</tr>
<tr>
<td>Flow period</td>
<td>0-60</td>
<td>15-75</td>
</tr>
</tbody>
</table>

The Flow Times T1, T2 and T3 must all be a multiples of the Time Slice. This is not required by ARCADY and can result in a small error in the ARCADY synthesis. If the ARCADY flows are summated for the Time Slices during the middle 60 minute period they are less than the 60 minute input flows. If queues and delays are low this error is insignificant, but rapidly grows in significance as queues and delays increase. (see Chapter 17 RODEL AND ARCADY).

Direct flows

If the detailed flows per Time Slice are available, they may be entered directly, rather than synthesised from coarser Turning Flows.

In Mainscreen F2 switches between Synthetic and Direct Flows. The Direct Flow option replaces the Flow Ratio and Flow Times fields with the Direct Flow field.

Keying F7 displays the Direct Flow screen for inputting or editing the Direct Flows on each leg.

Esc returns to the Mainscreen.

The Fkey functions are displayed on the bottom line of the Direct Flow Screen.

Notes on Direct flows

The Direct Flows must be for the whole Time Period.

The Flow Period must be for the whole Time Period.

The Turning Flows must be for the whole Time Period.

The Turning Flows define the turning proportions that apply to the Direct Flows.

The total Turning Flows / leg in Mainscreen must be equal to the total flows / leg in the Direct Flow Screen.
12. MODE 1 OPERATION

The purpose of Mode 1 is to generate the set of entry Geometry pairs (EL' pairs) for each leg that are equivalent to the input Target Parameter. This is done prior to scheme drawing. The EL’ pair that best fit the site constraints is found for each leg for the AM and PM periods, and the worst case (largest geometry) for each leg is used to sketch the initial layout.

Mode 1 has four options, each with a different Target Parameter:

<table>
<thead>
<tr>
<th>OPTION</th>
<th>TARGET PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1a</td>
<td>Average Delay</td>
</tr>
<tr>
<td>Mode 1b</td>
<td>Maximum Delay</td>
</tr>
<tr>
<td>Mode 1c</td>
<td>Maximum Queue</td>
</tr>
<tr>
<td>Mode 1d</td>
<td>Maximum RFC</td>
</tr>
</tbody>
</table>

The Mode options are changed by keying F1. When the desired Mode 1 option has been displayed the user specifies the desired Target Parameter values in Line 1 of Field 1. Values of the entry geometry E and L' are not input.

Line 1 TARGET PARAMETER (four options)
Line 2 Blank
Line 3 Half Width V (metres)
Line 4 Maximum flare length R (metres)
Line 5 Maximum entry width Phi (degrees)
Line 6 Minimum flare length D (metres)
Line 7 Grade Separation GS (0 or 1)

V and GS are known, and only approximate values of R, Phi and D are required as capacity, queues and delays are insensitive to typical values (i.e.):-

If R is greater than 15 metres increasing R has little effect on capacity. However, values of R less than 10 metres should be avoided.

PHI is determined largely by the layout of the approach roads and there is little scope for significantly altering capacity by varying PHI. It is sufficient to initially estimate PHI to the nearest 5 degrees.

The effect of D on capacity is small, and D can be estimated from the site constraints to the nearest 5 metres. (See FIG. 3 THE CAPACITY / GEOMETRY RELATIONSHIPS)
FIG 3. CAPACITY / GEOMETRY RELATIONSHIPS
When acceptable target parameters have been achieved F5 displays the full range of E-L’ pairs.

Any constraint problems become immediately apparent, and different EL’ pairs can be selected, or Mode 1 repeated with a larger target parameter(s).

Alternatively, a smaller inscribed circle diameter D can be chosen. This allows and E and L’ to be increased by allowing the stop lines to be moved forward (possibly allowing segregated left turns also). This produces a large net increase in capacity. However the entry deflection needs to be considered as it may have been reduced.

(If the approach road is wider than 7.3 metres then it may be possible to increase the capacity significantly by off-setting the centre line to increase the half width V.)
13. MODE 2 OPERATION

Mode 2 is used to refine the Mode 1 results, by rapid experimentation with the geometry. The rapid response (1 or 2 seconds) allows the designer to develop a 'feel' for the problem and to converge on a solution.

Any of the input fields may be modified, and sensitivity tests applied to both geometry and flow data.

The Flow or Capacity Factor in field 6 of Mainscreen is provided to allow the flows or capacities on each leg to be factored for various sensitivity tests etc.

The Flow Factor (field 6 header 'FLOF') is particularly useful when the delays predicted for the optimum geometry are unacceptable. It can then be used to factor down the flows to find the flow level that will produce acceptable delays. (ie reduce the traffic instead of increasing the capacity). Revised flow forecasts can then be derived using this flow/delay information.

The Flow Factor is also useful for incrementing the flows to find the level at which a design will produce unacceptable delays. Usually one leg fails well before the rest. The geometry can then be modified to produce a balanced design with legs that should last equally well.

The Capacity Factor (field 6 header 'CAPF') is useful for testing the effects of capacity variation, or for reducing the capacity below the theoretical to allow for site specific conditions. It can be used to represent the effect of a Pelican Crossing by factoring down the capacity pro-rata for the proportion of the Results Period when the Pelican will stop traffic.

(The Confidence Level in input field 7 of Mainscreen also modifies the flows and capacities. See Chapter 16 CONFIDENCE LEVEL)
FIG. 4A(US) GEOMETRIC DEFINITION
FIG. 4b (US) GEOMETRIC DEFINITION
14 EFFECTIVE GEOMETRY

The geometry is defined in LR 942 'The Traffic Capacity of Roundabouts' and in FIG. 4a (US) & 4b (US) GEOMETRIC DEFINITION.

The Department of Transport publications TA 42/84 and TD 16/84 provide standards and advice. However the principles involved need to be understood to ascertain if a particular piece of advice or standard applies. Their relative importance in relation to each other and to the scheme in hand also needs to be considered in order to trade-off conflicting objectives and find an optimum solution within the constraints.

It is essential that the geometry used in RODEL is the 'EFFECTIVE GEOMETRY' otherwise the actual queues and delays will be considerably greater than the RODEL results. This is particularly true for the Entry Width E, the Entry Lane Markings, the Flare Length L', and the Exit Geometry.

The Entry Width

In the past it has been accepted practise on very large old traffic circles to draw the deflection island so that its imaginary extended arc would pass through a point half way between the centre and edge of the central island.

However Kimbers capacity equation reveals that the capacity is very sensitive to the entry width. Traffic on roundabouts with deflection islands as in FIG5(a) may not fully use the entry width as traffic entering from lane 2 do not leave sufficient space between themselves and the central island for a vehicle to simultaneously enter from lane 3. In such cases the effective entry width will be less than the physical entry width. Because capacity is so sensitive to the entry width, this can lead to a severe under estimation of queues and delays.

It is also very important that the centre line of the approach road is not deflected sharply to the left as this can produce an area of dead roadway with an effective entry width less than the physical width. This can cause the offside lane entry traffic to collide with the central island or with traffic entering from the adjacent entry lane.

In order to ensure an effective entry width, the deflection island should be tangential to the central island, and the entry angle should be such that the traffic in the lane next to the offside lane enters the circulating width on a path that does not 'clip' the central island, but on a path that leaves sufficient circulating width next to the central island to allow the offside lane traffic to negotiate the roundabout freely (Fig 5 b)
FIG. 5 (US) ENTRY GEOMETRY
The Entry Lane Markings

Kimber's capacity equations assume that there are no lane arrows on the approach lanes of Roundabouts. The use of lane arrows reduces the capacity, and both ARCADY and RODEL will therefore underestimate queues and delays in such cases.

The reduction in capacity can be quite severe when a high proportion of the approach flow uses one exit. Assume an approach on a 4 leg roundabout has three lanes, with arrows left, straight and right. If 60% of the approach flow is straight ahead, it is constrained to the middle lane which only has 1/3 of the approach capacity. The resulting queues can quickly block back beyond the beginning of the flare preventing access to the left and right turn lanes, further reducing capacity.

Lane arrows should not be used if capacity is a problem. Often they are introduced for safety reasons. However, the problem may be the result of poor exit geometry. (see Exit Geometry below)

The layout of the lane markings can also adversely affect capacity. Traffic often has a bias towards the near-side lane and away from the offside lane. The lane markings can either encourage this bias, or can encourage better lane utilisation. FIG. 6 LANE MARKINGS shows the alternative markings. The best marking for an approach will depend on the turning volumes. The markings that produce the most balanced lane intensities are best.
The Flare Length

The Flare should develop gradually and be tangential to the existing curb line, avoiding any sharp angles.

The flare length is best measured by:-

1. Measure the effective entry width E and half width V.
2. Calculate $X = (E+V)/2$
3. Find the point where the width across the flare is X
4. L' is the distance from E to the point where the width is X.

(see FIG. 7 (US) FLARE LENGTH)

To set out the flare lengths, other x values can be found for the 1/4 and 3/4 points etc.

![FIG. 7 (US) FLARE LENGTH](image)

The Exit Geometry

The Exit Geometry has three main parameters:

- Exit Taper
- Exit Width
- Exit Angle

The exit taper should be between 1/15 and 1/20 and must be uniform over the whole length.
The deflection island on the exit should be formed by an arc tangential to both the central island and to the centre line of the exit road. Ideally the minimum radius should not be less than about 40 metres. The larger the exit radius the better, as this reduces the exit angle making it easier for traffic to leave the Roundabout.

However the exit radius should not be so large that in conjunction with the opposite entry it encourages straight ahead traffic to negotiate the roundabout at high speed. (see Chapter 19 SAFETY).

The exit taper should be constructed by starting the taper on the circulating width and tapering uniformly to the finish on the exit carriageway. The exit width X naturally emerges. (see FIG. 8 (US) EXIT TAPER)

This avoids layouts with good tapers from the exit along the exit roadway, but with sharp tapers from the circulating width into the exit.

The exit geometry is not included in the capacity equations as the exit capacity is normally much greater than the entry capacity. However traffic may not fully utilise the entry width if the downstream exit has poor geometry. This can reduce the entry capacity, particularly for straight ahead movements.

The circulating width should be between 1 and 1.2 times the maximum entry width. By constructing the exit taper as described above, the resulting exit width will therefore be related to the maximum entry width.
15. THE RATIO OF FLOW TO CAPACITY

Paragraph 6.2 and 6.4 in TA 23/81 recommends that the ratio of flow to capacity (RFC) be used as an indicator of junction performance. The standard error in the capacity equations (15% or -15%) is explicitly recognised.

It is stated that if a maximum RFC of 85% can be achieved then queueing will be theoretically avoided in 4 out of 5 cases, and a max RFC of 70% will avoid queuing in 39 out of 40 cases. It also advises that having the same RFC on each leg will produce a balanced design.

Moded of RODEL generates the average delays per leg (in addition to the ranges of entry geometry) for the input maximum RFC. This option has been used to examine the above advice from TA 23/81.

It was found that the maximum RFC of 0.85 is often a quite misleading indicator of junction performance respecting queues and delays. (queues and delays themselves are much better indicators).

Queues and delays depend on the absolute value of flow as well as the RFC. Consequently two cases each with a maximum RFC of 85% but with quite different flows will have very different queues and delays.

The following points summarise the findings:-

1. Maximum RFC is an uncertain measure of junction performance and can be very misleading.

2. Queue length is a poor measure of junction performance and is only important if blocking back between junctions is a danger, as this will create additional delay.

 At low flows queues can be very small but delays per vehicle large.
 At high flows the queues can be large but the delay per vehicle small.

3. Delay is the best indicator of junction performance. (Delay per vehicle and total delay).

Delays were found with a maximum RFC of 85% for a wide range of flow levels. It can be seen from the results in FIG. 9 that the delays vary for different flows even though the maximum RFC is 85% for every flow value.

Low flows with a maximum RFC of 85% produce an average delay of over a minute (max delay over 2 minutes). This can lead to unnecessary under design. At high flows (when design is most difficult), a maximum RFC of 85% can lead to over design, with average delays of only 4 or 5 seconds, that may require extensive land and public utility costs. The larger the flows the greater the degree of over design. Higher delays and lower costs are economically justified in such cases.
From FIG. 9 it is clear that having the same RFC on each leg will not produce a balanced design unless the flows are similar on all legs.

RODEL enables balanced designs to be achieved by means of the Flow Factor. When an acceptable set of geometry has been found with good safety, cost and delay characteristics, the Flow Factor can be used to increase the flows on all legs incrementally. Usually one leg fails well before the rest. Minor changes in the geometry can improve the worst leg at the expense of the better legs to derive a balanced design that should last equally well on all legs.

Rather than using the maximum RFC as a measure of junction performance, RODEL uses delays and delay costs. To do this the 'error' on both capacity and flow is taken into account by means of the CONFIDENCE LEVEL. Geometry is generated for the chosen delays with the specified level of confidence that they will not be exceeded.

Rather than seeking to produce a design that simply passes a 'winning post' such as maximum RFC, RODEL enables the user to generate the optimum geometry (with the specified confidence level) that minimises queues and delays, yet maximises both safety and cost/benefit objectives.
16. CONFIDENCE LEVEL

It is not possible to estimate queues and delays accurately. They can only be estimated for a particular confidence level (either implicit or explicit). If queues and delays are estimated with a 50% confidence level, it is 50% certain that the actual queues and delays will not be greater than the estimated values. (apart from random variation)

The delays and queues calculated depend on flow and capacity. Both flow and capacity contain 'error'. Kimbers capacity equation has a standard error of -15% to 15% for typical values. The forecast flows are similarly imprecise. Consequently the ratio of flow to capacity (RFC) has an even greater standard error.

This wide range of possible RFC's can produce a very wide range of possible delays and queues for a given geometry.

The delay/RFC curve (FIG. 10) illustrates the problem. The shape of the curve is such that ignoring the range of possible RFC's can lead to a gross underestimation of the possible queues and delays.

In Case 1 the whole RFC range is on the flat part of the curve, and any value of RFC in the range will produce low delays. The delay forecast is therefore robust.

Case 2 is quite different. The average RFC (50% confidence level) has delays virtually the same as Case 1. However, as Case 2 is close to the steep section of the curve, the possible values of RFC greater than the 50% value have very high delays.
Values greater than 50% will occur if the actual flows are greater than the input flows, and/or if the actual capacity is lower than the theoretical. ARCADY implicitly uses the 50% confidence level by using the average value for capacity with the input flows. Case 2 would appear acceptable to the Design Engineer with a 50% confidence level. There would therefore be no incentive to modify the geometry in order to increase the capacity. Any increase would produce no significant reduction in the calculated delays since the average RFC is on the flat part of the curve. The design would therefore be considered acceptable, and the risk of very high delays not realised.

With RODEL the confidence level is input explicitly. The queues and delays can be quickly found for various confidence levels. (ie 50% to 99%). A minimum confidence level of 85% is desirable. RODEL at 85% would indicate that Case 1 was acceptable. However, the delays at 85% for Case 2 would be very large, providing a challenge for the designer.

The good news is that since the 85% RFC is on the steep part of the curve it is extremely sensitive to small changes in RFC (changes in capacity and/or flow). The geometry therefore only requires minor alterations (in E and L') to move the 85% RFC onto the flat part of the curve producing low delays. Often this requires no extra land or service costs. The result is a robust design with low delays and, with a known confidence level.

In some cases acceptable delays can not be achieved at 85% confidence level. It may be that delays are fine at 80%, or still unacceptable at 50%. The delays can easily be tabulated or plotted for the range of Confidence Levels. Capacity and flows are factored by the chosen confidence level, as shown in the following table.

<table>
<thead>
<tr>
<th>Confidence Level (%)</th>
<th>Capacity Factor</th>
<th>Flow Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>55</td>
<td>0.986</td>
<td>1.014</td>
</tr>
<tr>
<td>60</td>
<td>0.971</td>
<td>1.029</td>
</tr>
<tr>
<td>65</td>
<td>0.957</td>
<td>1.043</td>
</tr>
<tr>
<td>70</td>
<td>0.941</td>
<td>1.059</td>
</tr>
<tr>
<td>75</td>
<td>0.924</td>
<td>1.076</td>
</tr>
<tr>
<td>80</td>
<td>0.905</td>
<td>1.095</td>
</tr>
<tr>
<td>85</td>
<td>0.883</td>
<td>1.117</td>
</tr>
<tr>
<td>90</td>
<td>0.855</td>
<td>1.145</td>
</tr>
<tr>
<td>95</td>
<td>0.814</td>
<td>1.186</td>
</tr>
<tr>
<td>99</td>
<td>0.737</td>
<td>1.263</td>
</tr>
</tbody>
</table>
17. RODEL AND ARCADY

Although RODEL is a totally different program to ARCADY it has the same theoretical basis. (LR 942 The traffic Capacity Of Roundabouts and LR 909 Queues and Delays at Road Junctions)

If both programs are used with the same input they will produce the same output. However RODEL is far more flexible than ARCADY and has many unique features that can be used in a variety of ways producing different results to ARCADY.

ARCADY results are for the whole Time Period. If a 90 minute Time Period is used then the output delays are the average delays over the whole 90 minutes and are therefore less than the average hourly delays.

The results from RODEL can be specified for either the whole Time Period or for a sub-period by means of the Results Period.

To compare the results of RODEL and ARCADY, RODEL must be run with a 50% Confidence Level (since ARCADY has an implicit Confidence Level of 50%). The Results Period must be for the whole Time Period.

If the flows are input directly then the results from ARCADY and RODEL will be the same.

If the flows are synthesised then attention must be given to a number of points in both RODEL and ARCADY.

1. The ARCADY synthesis contains a small error such that the sum of the flows in the relevant Time Slices is less than the total input Turning Flows per leg. This difference is not important at low queues and delays, but grows in significance as they get larger.

2. The Results Period in RODEL must be for the whole time period to be consistent with ARCADY.

3. The Time Slice in ARCADY must be a factor of the Flow Times and the Time Period in order to avoid another source of error in the ARCADY synthesis.

4. ARCADY has four ways of specifying the Flow Profile. The RODEL method for synthesising the Flow Profile is generalised and any profile can be input that can be specified by three flow levels and times (Flow Ratios and Flow Times). The input will then be consistent and the results will be virtually identical.

RODEL produces the maximum delays in addition to average delays. ARCADY produces average delays. Designs rapidly developed with RODEL can be transferred to ARCADY for a single run for submission to the Department of Transport. (RODEL runs have been accepted by the DTp and this is expected to increase)
18. RODEL AND OBSERVATIONS

If queues or delays are surveyed and compared with the results from a model such as ARCADY or RODEL, a number of important considerations need to be taken into account.

1. The observed queues or delays will vary randomly from day to day even with identical flow conditions. In order to eliminate this random variation the 'observed values' should be taken as the mean of observations made at the same time on 40 separate days with similar flow and conditions.

2. Both RODEL and ARCADY aim to estimate these 'observed values'. The maximum queue should therefore equal the mean of the maximum values of 40 surveys made under similar flow conditions. Similarly the average delay should equal the mean value of the average delay of 40 surveys under the same flow conditions.

3. If the RFC is on the flat section of the Delay/RFC curve, then agreement with the 'observed values' should be quite good, but close to or on the steep part of the curve agreement is less likely because results are very sensitive to small changes in flow and/or capacity.

Since flows vary from day to day the average flows from the 40 observations should be used.

The estimated queues and delays also depend on the capacity. As the capacity equations contain 'error', the Capacity Factor can be used to estimated queues and delays for a range of capacities around the mean value from the capacity equation (from 85% to 115%). The resulting range of queues and delays can be then be compared with the 'observed values'.

4. For estimating future queues and delays the Confidence Level takes into account the 'error' in both flow and capacity. The results have the specified Confidence Level that they will not be exceeded.

5. The maximum queue on any day will vary randomly about the mean value predicted by RODEL. This needs to be considered when 'blocking back' is a danger. The random variation can very occasionally be as high as plus or minus 90% about the predicted mean queue. When the predicted mean queues are small this is not significant, but grows in importance with larger mean queues. For practical purposes it is rare for the mean queue to be exceeded by 50%

Double roundabouts can therefore be designed for a maximum queue of about 0.75 the storage capacity.
19. SAFETY

Roundabout design can be very difficult in urban areas where conflicting traffic and pedestrian flows are high and where land and services are very expensive. FIG 10 illustrates the problem in the form of an Objectives Triangle.

![Objectives Triangle Diagram]

FIG. 11 OBJECTIVES TRIANGLE

Minimising costs and delays while maximising safety are competing objectives, and often one can only be fully achieved at the expense of the others.

The design problem is to explore the space inside the Objectives Triangle to find the point that best balances the competing objectives.

RODEL allows the designer to easily explore the Objectives Triangle by rapidly generating sets of alternative geometry’s that can be selected with due regard to safety, delays and costs.

Safety considerations have to be given to Pedestrians, Cycles (motorcycles and bicycles) and Vehicles.

Pedestrian Safety.

The following points need to be considered:-

1. Pedestrian flows
2. Pedestrian routes
3. Vehicle flows
4. Vehicle speed
5. Deflection Island size
6. Roadway width
7. Visibility criteria
8. Crossing Sites
9. Guide Rails
10. Pelican Crossings

Pelican crossings (or Zebra Crossings) can reduce the capacity, and will increase the queues and delays considerably if any leg is moved on to the steep section of the Delay/RFC Curve (FIG. 10)

The effects of a Pelican crossing(s) close to a Roundabout can not be truly modelled since the exit capacity may be reduced causing blocking back onto Roundabout. The effect of blocking back on other traffic negotiating the roundabout cannot be reliably determined. This will not only vary between sites but will vary at the same site on different occasions.

It may be possible to produce a design that can accommodate the worst possible effects of a Pelican(s) by assuming that the roundabout capacity is zero for the proportion of the Time Period that the pelican is operating for pedestrians. The Capacity Factor can be used to factor down the capacity pro-rata.

Cycle Safety

Roundabouts do not reduce accidents for two wheeled vehicles (cycles and motorcycles) to the same extent as for other roundabout users. Often there is no reduction in accidents to cycles and motor cycles.

The main accident type is the entering vehicle colliding with the cyclist (who has priority) on the circulating roadway.

If cycle flows are high then a roundabout may not be the best junction type.

If bicycles cannot be re-routed, it may be possible to incorporate bicycle facilities into the roundabout design. The principle to be embodied is to give priority to the vehicle so that the cyclist, not the vehicle driver, decides if it is safe to proceed. (Drivers at stop or give way lines often fail to notice approaching bicycles, but the reverse is less likely)
The entry geometry can be designed to reduce the entry speed. This should reduce the accident rate, but may also reduce capacity and lead to sharp increases in delay. (The effective geometry must be used in evaluating such layouts). At high capacity the discharge rate is high and the accident risk to circulating traffic is therefore greater. The accident severity however will be greater at the higher off-peak speeds.

Vehicle Safety

The main source of vehicle accident is caused by excessive entry speeds. TD 16/93 gives advice on the Entry Deflection intended to slow down the entry traffic. The path of an entering vehicle should follow an arc of radius 100 meters or less for a minimum of 20 metres. This should occur within the 30 metres prior to the yield line. (in some cases the 20 meters of arc may overlap the yield line by a few meters) The construction is shown as path 1 or 2 in FIG. 12 ENTRY DEFLECTION.

Good signing and visibility of the roundabout on the approach roads can greatly help reduce entry /circulating accidents.

Care also needs to be given to vertical alignments. With the increased availability of CAD it is simple to produce contours and long sections along vehicle paths through the roundabout to check that the gradients/cross falls for surface water run-off are not excessive or have sudden changes that could be an accident risk. Long sections that plot each end of the vehicle axil are very helpful in this respect.

Often a trade-off has to be made between safety, delay and cost. It is important to remember that the geometry for alternative safety layouts must be the effective geometry, otherwise the queues and delays may be drastically underestimated. (see Chapter - 14 EFFECTIVE GEOMETRY)
20. ERRORS

RODEL contains a three level error reporting regime.

1. Warnings

If a non fatal input error is encountered, the results are displayed, together with a warning message above the results field.

2. Fatal Errors

If a fatal input error is encountered an Error message is displayed instead of the results and the offending field(s) highlighted. The error must be rectified to proceed, or to leave the Mainscreen, otherwise the corrupted input would be saved to file.

3. System Crash

If the system crashes due to input errors not detected by the error checks, or due to a fault in the program the ERROR SCREEN is displayed.

The user is congratulated for beating the system and is encouraged to report the SYSTEM ERROR MESSAGE displayed in the box at the bottom of the screen.

If Rodel runs out of memory then the message WS FULL is momentarily displayed before dropping out of Rodel back to Dos.

Corrected versions, including any minor updates, will be supplied from time to time if necessary.
21. OUTPUT DEFINITIONS

1 Capacity

Capacity is derived from Kimbers equations in LR 924 'The Traffic Capacity of Roundabouts', and is expressed in vehicles per Results Period in Mainscreen and vehicles per Time Slice in the Statistics Screen.

2 Queues

The queues are derived using the set of queueing equations (corrected for accuracy) from LR 909 'Queues and Delays at Road Junctions'. Queues are expressed in vehicles.

3 Delays

The delays are derived from the flows and queue lengths using numerical integration, and are vehicles per minute in Mainscreen and minutes per Time Slice in the Statistics Screen.

4 Average Delay

The average delay is the total delay for the Results Period divided by the total arrivals during the Results Period. Vehicles with delays that overlap either the start or the end of the Results Period have that part of their delay excluded. These boundary errors tend to cancel each other. Any residual error is so insignificant that it can be ignored, being far less than the 'noise' in the input data.

5 Maximum Delay

The maximum delay is the longest delay per vehicle during the Results Period. If it equals the Results Period then the delay overlaps the Results Period which should be increased to find the true value. The delays per Time Slice displayed on the Statistics Screen indicates the shape of the delay curve and how the Results Period should be selected to avoid overlap.

6 The Maximum Queue

The maximum queue is the longest queue at the end of any Time Slice during the Results Period.

7 The Average Queue

The average queue is the mean of the queues at the end of the Time Slices during the Results Period.

Because of the random nature of traffic behaviour the queues and delays cannot be predicted for a single instance. The above results are equivalent to the mean of observations on 40 representative occasions.
22. INSTALLATION

Installation of RODEL is performed by INSTALL.BAT..

1. Put Rodel Diskette in drive A.

2. Select START then RUN and type A:\INSTALL A C and enter OK.

3. When installation is complete, remove the Rodel Diskette.

4. Create a shortcut to C:\Rodel.bat and drag onto the desktop.

5. Right click the shortcut and select PROPERTIES. Select PROGRAM and 'close on exit'. Also select SCREEN and click 'full screen' and apply end exit.

6. Double click shortcut.

7. The 'password' screen will be displayed containing your application number. Telephone as instructed quoting the application number and your password will be provided.

8. Type in the password using the numbers above the QWERTY keys and press the F10 key.

9. If the password is correct the system will display the Logo followed by the Menu. When the Menu is displayed press Ctrl and F9 to set the printer settings. (see Chapter 5 THE PRINTER SCREEN)

Rodel is now initialised and no longer requires a password on the current machine. After exiting, you can recall Rodel by clicking the Rodel shortcut

INSTALLATION PROBLEMS

Rodel requires the majority of the 640K DOS memory. (about 570K). If there is insufficient memory Rodel will drop back to DOS immediately after displaying WS FULL.
Rodel has a facility for moving it from one PC to another.

To move Rodel from PC1 to PC2

Copy the RODEL folder from PC1 to PC2.
Copy the shortcut or create a new one on PC2
Run Rodel on PC2.
It will display an application number and ask for a password.
Run Rodel on PC1.
From the menu Screen enter Control F5.
Release the keys and enter Control F5 again.
The uninstall screen will appear. Ignore the instructions in favour of these.
Type in the application number from PC2 using the QWERTY numeric keys.
Press F10 to display the password for PC2.
Type the password into PC2.

PC2 will be enabled and PC1 will be disabled.

This is much simpler than it appears on paper.

This moving process can be repeated any number of times. However, you can only generate 1 password per move so double check the application number and