Span Structure Table

- **Left**:
 - Post 1: 15'-0" L/H ± 5'-0" Off-Set, 17'-4" Top
 - Post 2: 37'-1" L/H ± 5'-0" Off-Set, 17'-4" Top
 - Post 3: 46'-0" L/H ± 5'-0" Off-Set, 37'-1" Top
 - Post 4: 5'-0" L/H ± 5'-0" Off-Set, 17'-4" Top
 - Post 5: 509.1, 17'-4" Top

- **Right**:
 - Post 1: 15'-0" L/H ± 5'-0" Off-Set, 17'-4" Top
 - Post 2: 37'-1" L/H ± 5'-0" Off-Set, 17'-4" Top
 - Post 3: 46'-0" L/H ± 5'-0" Off-Set, 37'-1" Top
 - Post 4: 5'-0" L/H ± 5'-0" Off-Set, 17'-4" Top
 - Post 5: 509.1, 17'-4" Top

Notes
1. **Span Structure Design** (Refer to BD-OS1 for more details)
2. **Special Foundation Requirements**
3. **Foundations**
4. **Substrate Table**
5. **Foundation Table**
6. **Sign Table**
7. **Wire Inlets**
8. **Chord Wire Inlet Detail**

Additional Information
- **Elevation**
- **Plan**
- **Typical Section**
- **Chord Wire Inlet Detail**
Standard Span Structures

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Max. Span (ft.)</th>
<th>Max. Height (ft.)</th>
<th>Curb Post (k)</th>
<th>Post Spacing (ft.)</th>
<th>Conc. Length (ft.)</th>
<th>Nominal</th>
<th>Struct.</th>
<th>Core</th>
<th>Post Spacing (ft.)</th>
<th>Conc. Length (ft.)</th>
<th>Nominal</th>
<th>Struct.</th>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>20'-0''</td>
<td>20'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
<tr>
<td>22'-0''</td>
<td>22'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
<tr>
<td>24'-0''</td>
<td>24'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
<tr>
<td>26'-0''</td>
<td>26'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
</tbody>
</table>

Notes:
1. Structure types are examples.
2. Specifications are based on the original design dimensions.
3. For shaft and rectangular footings, see BS-051.
4. Shaft lengths and concrete quantities are for shafts 12'' x 12'' substituted as needed by the contractor.
5. The maximum shaft length is 120'' for shaft sizes 12'' x 12'' and 24'' x 24''.
6. See Table 00-001 for additional information.

Overhead Sign Structures

<table>
<thead>
<tr>
<th>Style</th>
<th>Max. Height (ft.)</th>
<th>Max. Span (ft.)</th>
<th>Curb Post (k)</th>
<th>Post Spacing (ft.)</th>
<th>Conc. Length (ft.)</th>
<th>Nominal</th>
<th>Struct.</th>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-051</td>
<td>20'-0''</td>
<td>20'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
<tr>
<td>S-051</td>
<td>22'-0''</td>
<td>22'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
<tr>
<td>S-051</td>
<td>24'-0''</td>
<td>24'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
<tr>
<td>S-051</td>
<td>26'-0''</td>
<td>26'-0''</td>
<td>12'-2''</td>
<td>32'-0''</td>
<td>18'-2''</td>
<td>10'-0''</td>
<td>10'-0''</td>
<td>10'-0''</td>
</tr>
</tbody>
</table>

Notes:
1. Structure types are examples.
2. Specifications are based on the original design dimensions.
3. For shaft and rectangular footings, see BS-051.
4. Shaft lengths and concrete quantities are for shafts 12'' x 12'' substituted as needed by the contractor.
5. The maximum shaft length is 120'' for shaft sizes 12'' x 12'' and 24'' x 24''.
6. See Table 00-001 for additional information.
Foundation Table

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th># Total Concrete Quantity (cu. ft.)</th>
<th>Long. Reinforcement Size</th>
<th>Trans. Reinforcement Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For details of anchor bolts and templates see BD-OS11.

1. Install one NPS 7 STD galvanized conduit in each foundation at pedestal
2. Any drilling for shaft foundations shall be performed from the existing
3. Height of pedestal or length of shaft may be increased as ordered by the
4. Where a footing is to be placed on rock, remove all disintegrated or shattered
5. The minimum shaft diameter shall be bolt circle diameter + 8"
6. The geotechnical engineering bureau shall be consulted under the following
7. The centrifugal engineering bureau shall be consulted under the following circumstances:
8. Foundation type, see BD-OS1.
9. For foundation type, see BD-OS1.
10. Footing or shaft is placed in soft clay or organic deposits.
11. Minimum bearing pressure at points shown. See foundation table.
12. Base structure foundations were designed using a concrete minimum compressive

PLAN - SHAFT

PLAN - FOOTING

SIDE ELEVATION - FOOTING

END ELEVATION

Foundation Item Numbers

<table>
<thead>
<tr>
<th>Foundation Type (see Note 3)</th>
<th>Item Number</th>
<th>No. of Bars</th>
<th>Size</th>
</tr>
</thead>
</table>

Department of Transportation Office of Structures

Overhead Sign Structures Span Structures Foundations

Signed:

Date:

Approve: 02/23/19

CHECKED BY:

CHECKED: 02/23/19

CHECKED: 02/23/19
For chord wire inlet detail, see BD-OS1.

For chord wire inlet detail, see BD-OS1.

For location of details 1 and 3, see BD-OS4.

1. Splice plates shall be 1/2" thick at top beam connections. Splice plates shall be 1/2" thick at lower beam connections. In some cases, splice plates may be over 1/2" thick at top beam connections. Splice plates shall be 1/2" thick at lower beam connections. Splice plates may be over 1/2" thick at top beam connections.

2. For location of details 1 and 3, see BD-OS4.

3. Saddle assemblies shall be shimmed as required to provide level seat for chord when all dead loads are applied. Saddle assemblies shall be shimmed as required to provide level seat for chord when all dead loads are applied. Saddle assemblies shall be shimmed as required to provide level seat for chord when all dead loads are applied. Saddle assemblies shall be shimmed as required to provide level seat for chord when all dead loads are applied.

4. For chord wire inlet detail, see BD-OS1.

5. For chord cap details, see BD-OS1.
1. **CHEMICAL CONNECTIONS MAY BE MADE WITH 1" Ø.** HIGH STRENGTH BOLTS. **FULLY TIGHTENED HOLES IN SPLICE PLATES MAY BE STANDARD.**

2. FOR LOCATIONS OF DETAILS, SEE BD-OS6.

3. **ALL VERTICAL CROSS CONNECTIONS SHALL BE SEAMLESS. DOUBLE ANGLES MAY NOT BE SUBSTITUTED FOR VERTICAL CROSS MEMBERS.**

4. **FULLY TIGHTENED SPLICE TUBES MAY BE USED IN LIEU OF THE BOLTED CONNECTIONS SHOWN IN DETAILS 4, 5 AND 6. IF OVERSIZE HOLES ARE INSTALLED VERTICALLY (OR SEMI-VERTICALLY) OVERSIZE HOLES IN BOLTED CONNECTION SPLICE PLATES OR DOUBLE ANGLES MAY BE FULLY TIGHTENED. HOLES IN GUSSET AND TAB PLATES SHALL BE STANDARD.**

5. **DETAIL 4 MAY BE SUBSTITUTED FOR DETAIL 5 AT THE FABRICATOR’S DISCRETION.**

NOTES:

- **DIAGRAM/STRUT AND CROSS BRACE TABLE**

<table>
<thead>
<tr>
<th>MEMBER SIZE</th>
<th>L (MIN.)</th>
<th>W (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 STD.</td>
<td>1200</td>
<td>4"</td>
</tr>
<tr>
<td>3 STD.</td>
<td>1800</td>
<td>4"</td>
</tr>
<tr>
<td>4 STD.</td>
<td>2400</td>
<td>4"</td>
</tr>
<tr>
<td>5 STD.</td>
<td>3000</td>
<td>4"</td>
</tr>
</tbody>
</table>

DETAILS:

- **DETAIL 1**

- **DETAIL 2**

- **DETAIL 3**

- **DETAIL 4**

- **DETAIL 5**

- **DETAIL 6**

DIAGONAL/STRUT AND CROSS BRACE TABLE

<table>
<thead>
<tr>
<th>MEMBER SIZE</th>
<th>L (MIN.)</th>
<th>W (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 STD.</td>
<td>1200</td>
<td>4"</td>
</tr>
<tr>
<td>3 STD.</td>
<td>1800</td>
<td>4"</td>
</tr>
<tr>
<td>4 STD.</td>
<td>2400</td>
<td>4"</td>
</tr>
<tr>
<td>5 STD.</td>
<td>3000</td>
<td>4"</td>
</tr>
</tbody>
</table>
CANTILEVER STRUCTURE TABLE

<table>
<thead>
<tr>
<th>S/L</th>
<th>ITEM NO.</th>
<th>LOC. NO.</th>
<th>STRUCTURE TYPE (NOTE 16)</th>
<th>ARM LENGTH (ft.)</th>
<th>POST BAR LENGTH (ft.)</th>
<th>STOP BAR LENGTH (ft.)</th>
<th>TRUSS LENGTH (ft.)</th>
<th>TRUSS DEPTH (ft.)</th>
<th>VCL</th>
<th>POST DESCRIPTION</th>
<th>SIGN DESCRIPTION</th>
<th>SIGN DESCRIPTION</th>
<th>SIGN DESCRIPTION</th>
<th>CONSTRUCTION FOUNDATION TYPE (NOTE 16)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. THESE STRUCTURES ARE DESIGNED IN ACCORDANCE WITH PROJECT STANDARD DESIGN SPECIFICATIONS AND TYPICAL DESIGN REQUIREMENTS FOR OVERHEAD SIGN SUPPORTS. ALL CONSTRUCTION AND MATERIALS SHALL BE IN ACCORDANCE WITH THE NYS STEEL CONSTRUCTION MANUAL.
2. FOR FOUNDATION DETAILS, SEE BD-OS10.
3. FOR BASE PLATE AND ANCHOR BOLT DETAILS, SEE BD-OS13.
4. INSTALL STOP BARS ON THE LOWER ARM AT THE CENTER LINE OF EACH SIGN AS SHOWN ON THIS SHEET. ANY RECESS IN SIGN SUPPORT IS NOT INCLUDED IN THIS CONFIGURATION. STOP BARS SHALL BE SHIELDED IN THE BASE PLATE.
5. FOR POST ARM CONNECTION DETAILS, SEE BD-OS11.
7. FOR VERTICAL ORIENTATION OF SIGN PANELS, SEE BD-OS12.
9. FOR BASE DETAILS, SEE BD-OS11.
10. THE SIGN STRUCTURE HEAVILY DEPENDS ON THE SIGN STRUCTURE CLEARANCES. CLEARANCES BETWEEN THE SIGN PANELS AND ROADWAY SURFACE, INCLUDING SPACING OF OTHER ATTACHMENTS, SHALL BE FIELD-VERIFIED PRIOR TO BEING SHIELDED. THE KEYSMANDER CLEARANCES ARE 2'-0"." THE DESIGNER SHOULD DESIGNED CLEARANCES TO ENSURE THE SIGN PANELS ARE NOT COMPROMISED.
11. THE CONTRACTOR SHALL ESTABLISH THE TOP OF PEDESTAL OR SHAFT ELEVATIONS BASED ON THE SIGN STRUCTURES AND ELEVATIONS AND DIMENSIONS SHALL BE PRESENTED ON THE SHOP DRAWINGS. A WEAK CONTRIBUTION IS THAT THE BOTTOM OF BASE PLATE IS ABOVE THE POINT OF CANTILEVER.
12. THE CONTRACTOR SHALL ESTABLISH THE TOP OF PEDESTAL OR SHAFT ELEVATIONS BASED ON THE SIGN STRUCTURES AND ELEVATIONS AND DIMENSIONS SHALL BE PRESENTED ON THE SHOP DRAWINGS. A WEAK CONTRIBUTION IS THAT THE BOTTOM OF BASE PLATE IS ABOVE THE POINT OF CANTILEVER.
13. FOR FOUNDATION DETAILS, SEE BD-OS10.
14. FOR STANDARD CANTILEVER STRUCTURE TYPE SELECTION TABLE, SEE BD-OS9.
15. FOR PERIMETRIC TERMS OF SIGN STRUCTURE TABLE, SEE BD-OS19.
16. FOR STANDARD CANTILEVER STRUCTURE TYPE SELECTION TABLE, SEE BD-OS9.
17. FOR FOUNDATION DETAILS, SEE BD-OS10.
18. FOR SPECIAL FOUNDATION DETAILS, SEE BD-OS10.
19. FOR STANDARD CANTILEVER STRUCTURE TYPE SELECTION TABLE, SEE BD-OS9.

DESIGNER NOTES:

NOTES:

TABLE OF OFFSET CODES:

- **EP:** END OF PEDESTAL
- **PB:** TRAFFIC FACE OF BARRIER BASE
- **NS:** END OF SHIELDING
- **FS:** FACE OF GUIDE PANEL
- **FP:** FACING FACE

OVERHEAD SIGN STRUCTURES:

- **CAMBER TABLE:**
 - MAX. ARM LENGTH
 - SINGLE ARM LENGTH
 - TRUSSED ARM LENGTH
 - MAX. ARM LENGTH
 - SINGLE ARM LENGTH
 - TRUSSED ARM LENGTH

OVERHEAD CANTILEVER STRUCTURES:

- **TYPICAL ELEVATION:**
 - SINGLE ARM
 - TRUSSED ARM
Standard Single Arm Cantilever Structures

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Max. Arm Length</th>
<th>Skin Panel</th>
<th>Arm Inps</th>
<th>Arm Weight</th>
<th>Box Connection Type</th>
<th>Post Inps</th>
<th>Post Weight (k)</th>
<th>Base Flange Type</th>
<th>Rect. Footing Type</th>
<th>Height Pedestal</th>
<th>Shaft Dia.</th>
<th>Shift Length (k)</th>
<th>Shift Complete Quantity (ft.q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-4-3</td>
<td>12'-0"</td>
<td>D3</td>
<td>10, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>12'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CS-5-3</td>
<td>13'-0"</td>
<td>D3</td>
<td>15, 650</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CS-6-3</td>
<td>13'-0"</td>
<td>D3</td>
<td>16, 750</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CS-7-3</td>
<td>13'-0"</td>
<td>D3</td>
<td>17, 850</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CS-8-3</td>
<td>13'-0"</td>
<td>D3</td>
<td>18, 950</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
</tbody>
</table>

Standard Trussed Arm Cantilever Structures

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Max. Arm Length</th>
<th>Skin Panel</th>
<th>Arm Inps</th>
<th>Arm Weight</th>
<th>Box Connection Type</th>
<th>Post Inps</th>
<th>Post Weight (k)</th>
<th>Base Flange Type</th>
<th>Rect. Footing Type</th>
<th>Height Pedestal</th>
<th>Shaft Dia.</th>
<th>Shift Length (k)</th>
<th>Shift Complete Quantity (ft.q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-1</td>
<td>12'-0"</td>
<td>D3</td>
<td>10, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>12'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CT-2</td>
<td>13'-0"</td>
<td>D3</td>
<td>15, 650</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CT-3</td>
<td>13'-0"</td>
<td>D3</td>
<td>16, 750</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CT-4</td>
<td>13'-0"</td>
<td>D3</td>
<td>17, 850</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
<tr>
<td>CT-5</td>
<td>13'-0"</td>
<td>D3</td>
<td>18, 950</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>3, 550</td>
<td>14'-0"</td>
<td>CS-6</td>
<td>CS-6</td>
<td>13'-0"</td>
<td>2'</td>
<td>5'-0"</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend

- **Skin Structure Designation:**
 - DL: (Typical)
 - CS: Cantilever
 - C: Cantilever
 - CS-3: Truss Arm
 - CS-4: Truss Arm
 - CS-10: Truss Arm
 - BD-10: Truss Arm
 - CS-15: Truss Arm
 - CS-20: Truss Arm
 - CS-30: Truss Arm
 - CS-40: Truss Arm

- **Additional Details:**
 - Post Height is based on a minimum post height of 2'-0".
 - Height and connection weights are included in the design.
 - For rectangular footings and shaft details, see Section 9.
 - Shear and column and concrete quantities are for shear and column and concrete quantities.
 - For further details, see Section 9.
 - These tables are for use with (4) thick aluminum flat plates.
Foundation Table

<table>
<thead>
<tr>
<th>Footing On Soil</th>
<th>Footing On Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Concrete Quantities</td>
</tr>
<tr>
<td></td>
<td>W (FT)</td>
</tr>
<tr>
<td>CS - 2</td>
<td>9'-1"</td>
</tr>
<tr>
<td>CS - 3</td>
<td>11'-6"</td>
</tr>
<tr>
<td>CS - 4</td>
<td>6'-7"</td>
</tr>
<tr>
<td>CS - 5</td>
<td>8'-3"</td>
</tr>
<tr>
<td>CS - 6</td>
<td>9'-7"</td>
</tr>
<tr>
<td>CT - 1</td>
<td>11'-6"</td>
</tr>
<tr>
<td>CT - 2</td>
<td>11'-6"</td>
</tr>
<tr>
<td>CT - 3</td>
<td>11'-6"</td>
</tr>
<tr>
<td>CT - 4</td>
<td>11'-6"</td>
</tr>
</tbody>
</table>

Notes:
- **GENERAL:**
 - **CONCRETE:** 3000 PSI COMPRESSIVE STRENGTH AT 28 DAYS.
 - **OPTIONS:** AVAILABLE.
 - **CONTACT:** THE GEOTECHNICAL ENGINEERING BUREAU.

Reinforcement:
- **Footing:** 4" (E) BARS TRANSVERSE BARS @ 1'-0" MAX. (TOP & BOTTOM)
- **Shaft:** PLACEMENT OF CONCRETE.
- **Drain:** 4'-0" COV. (TYP.) TRANSVERSE BARS @ 1'-0" (TOP & BOTTOM)
- **Template:** 4'-0" DIAMETER PLUS 2'-0".

Dimensions:
- **Template**: 4'-0" DIAMETER PLUS 2'-0".
- **Elevation Shaft:** DIAMETER PLUS 2'-0".

Erection:
- **Foundations Concrete:**
- **Foundations Shaft:**
- **Foundations Elevation:**
- **Foundations Side Elevation:**
- **Foundations Footing:**

Diagram:
- **Shrinkage:**
- **Tension:**
- **Compression:**
- **Reinforcement:**
- **Concrete:**
- **Foundation:**

Foundation Table:
- **Type:** CS, CT
- **Concrete Quantities:**
- **Reinforcement:**

Contact:
- **Department of Transportation:**
- **Geotechnical Engineering Bureau:**

Notes:
- FOR DETAILS OF ANCHOR HOLES AND TEMPLATES, SEE BD-1000.
- INSTALL ONE HOE 2 HOLES UNLESS CONSTRUCTED IN PAIR, OR SHARP, ONLY IF SEA LEAVING IS NOT IN THE CONTRACT.
- FOR FOUNDATION TYPE, SEE DD-OS, FOR FOUNDATION LENGTH AND DIAMETER, AND FOUNDATION TYPE IN SUBMITTAL TYPE IS SEEN, SEE BD-1000.
- **INSTALLATION:**
 - **CONCRETE CONSTRUCTION:** COMPLIES WITH ALL SPECIFICATIONS OR UNFILLED MATERIALS TO LINES AND LEVELS SHOWN ON THE CONTRACT.

 - **FOUNDATION:**
 - **ELEVATION:** OF FOUNDING, BACKFILL, FORMWORK, REINFORCEMENT, CONDUIT STUB-OF SHAFT SHALL BE CONSULTED BY THE ENGINEER AND BEYOND THE FACE OF THE FINISHED FOOTING, SHALL BE ON SOIL.

 - **PLACEMENT OF CONCRETE:** DURING THE DRILLING OPERATION. CASING SHALL BE REMOVED PRIOR TO PLACING OF CONCRETE.

Foundation:
- **Concrete:**
- **Shaft:**
- **Drain:**
- **Template:**

Foundation Erection:
- **Foundations School:**
- **Foundations Elevation:**
- **Foundations Side Elevation:**
- **Foundations Footing:**

Dimensions:
- **Template:** 4'-0" DIAMETER PLUS 2'-0".
- **Elevation Shaft:** DIAMETER PLUS 2'-0"
- **Elevation Template:**
- **Side Elevation:**

Contact:
- **Department of Transportation:**
- **Geotechnical Engineering Bureau:**

Notes:
- FOR DETAILS OF ANCHOR HOLES AND TEMPLATES, SEE BD-1000.
- INSTALL ONE HOE 2 HOLES UNLESS CONSTRUCTED IN PAIR, OR SHARP, ONLY IF SEA LEAVING IS NOT IN THE CONTRACT.
- FOR FOUNDATION TYPE, SEE DD-OS, FOR FOUNDATION LENGTH AND DIAMETER, AND FOUNDATION TYPE IN SUBMITTAL TYPE IS SEEN, SEE BD-1000.
- **INSTALLATION:**
 - **CONCRETE CONSTRUCTION:** COMPLIES WITH ALL SPECIFICATIONS OR UNFILLED MATERIALS TO LINES AND LEVELS SHOWN ON THE CONTRACT.

 - **FOUNDATION:**
 - **ELEVATION:** OF FOUNDING, BACKFILL, FORMWORK, REINFORCEMENT, CONDUIT STUB-OF SHAFT SHALL BE CONSULTED BY THE ENGINEER AND BEYOND THE FACE OF THE FINISHED FOOTING, SHALL BE ON SOIL.

 - **PLACEMENT OF CONCRETE:** DURING THE DRILLING OPERATION. CASING SHALL BE REMOVED PRIOR TO PLACING OF CONCRETE.

Foundation:
- **Concrete:**
- **Shaft:**
- **Drain:**
- **Template:**

Foundation Erection:
- **Foundations School:**
- **Foundations Elevation:**
- **Foundations Side Elevation:**
- **Foundations Footing:**

Dimensions:
- **Template:** 4'-0" DIAMETER PLUS 2'-0".
- **Elevation Shaft:** DIAMETER PLUS 2'-0"
- **Elevation Template:**
- **Side Elevation:**

Contact:
- **Department of Transportation:**
- **Geotechnical Engineering Bureau:**