Welcome, and thank you for your interest in the I-81 Viaduct Project. My name is Mark Frechette and I am with the New York State Department of Transportation, serving as the I-81 Viaduct project director. With me tonight are Joseph Flint, NYSDOT project manager, as well as several members of the project team, who are here to discuss the project with you. We are holding a series of neighborhood meetings in the next few weeks to bring information presented at our recent scoping meeting to the individual neighborhoods and give you additional forums to learn about the project and submit your written comments to us.

As you know, the I-81 corridor is the principal north-south transportation route for commuters, travelers, and commercial vehicles within greater Syracuse. In recent years, the corridor has been the subject of community and agency concern because of ongoing congestion and safety issues, as well as aging infrastructure. To address these concerns, NYSDOT is proposing to rehabilitate, reconstruct, or replace the I-81 viaduct through Downtown Syracuse, in addition to other potential improvements in the I-81 Viaduct Priority Area--roughly, a 3.5-mile section of I-81 and a 2.5-mile section of I-690 within and near downtown Syracuse.
At present, several transportation and planning “needs” have been identified in the project area. The I-81 corridor has numerous nonstandard and nonconforming design elements, in addition to structural deficiencies. These features and high traffic volumes have combined to create several vehicular, pedestrian, and bicyclist mobility and safety concerns.

The “purpose” of the I-81 Viaduct Project is to address the structural deficiencies and nonstandard highway features in the I-81 corridor while creating an improved corridor through the City of Syracuse that meets transportation needs and provides the transportation infrastructure to support long-range planning efforts (such as the Syracuse Metropolitan Transportation Council's Long Range Transportation Plan, and the City of Syracuse's Comprehensive Plan).
To meet the project’s “purpose,” five objectives have been developed for the project. These objectives are the measures against which the project alternatives have been developed and screened to help determine which should advance for further study. In line with the project’s purpose, the objectives aim to address structural deficiencies, geometric highway design standards, local travel needs, pedestrian and bicycle connectivity, regional travel needs, and access to key destinations.
NYSDOT and the Federal Highway Administration (FHWA) are preparing an Environmental Impact Statement (EIS) for the project to assess its potential impacts on the built and natural environments. The environmental review phase is being conducted pursuant to federal and state environmental regulations, including the National Environmental Policy Act (NEPA) and the New York State Environmental Quality Review Act (SEQRA).
The environmental review process began on August 26, 2013, when we published a Notice of Intent to prepare an EIS in the Federal Register. Since then, we have been conducting the scoping process. Scoping involves identifying project needs and objectives, developing project alternatives, meeting with the public, and identifying potential environmental considerations to be studied in the EIS. The process provides an early opportunity for public input, and a formal mechanism to document and respond to community suggestions, questions, and concerns. Written comments will be accepted through September 2, 2014 and responses will be documented in the Final Scoping Report. I will tell you more about that report at the end of this presentation.

Following scoping, we will move into the EIS phase. Public participation will continue to play a key role throughout the process.

The environmental review process will conclude with a Record of Decision (ROD), which will identify any potential environmental impacts and mitigation measures, as well as the preferred alternative that will be progressed to construction.
NYSDOT10 need the "ladder" diagram that shows "we are here" in scoping process

NYSDOT, 11/8/2013
The project alternatives that have been considered for the I-81 Viaduct Project fall into six categories:

- the No Build Alternative, in which the project does not move forward;
- the Viaduct Alternatives, in which the viaduct would be rehabilitated or reconstructed;
- the Street-level Alternatives, in which the viaduct would be removed and surface streets improved;
- the Tunnel Alternatives, in which the viaduct would be removed and I-81 located underground, with a new reconstructed roadway with aesthetic, bicycle, and pedestrian amenities on the roadway on top of the tunnel;
- the Depressed Highway Alternatives, in which the viaduct would be removed and I-81 located in an open-cut trench;
- and the Other Alternatives, which include concepts for realigning I-81.

We have conducted a preliminary evaluation of the project alternatives to determine whether they meet the project’s purpose and need, based on the project objectives discussed earlier; whether they would result in a substantial number of building acquisitions; whether they have any unreasonable constructability considerations; and whether they would have a reasonable cost. We have also taken into account public comments during scoping.

Based on these considerations, we determined whether an alternative would “pass” or
V-1: Rehabilitation would be a long-term program of substantial capital investment to keep the existing I-81 in a state-of-good repair. This approach would keep I-81 structurally safe, but NYSDOT would not add shoulders, enlarge medians, fix the weaving lanes, or implement other safety or operational improvements. As a result, Rehabilitation would retain many nonstandard and nonconforming design features. The cost of the Rehabilitation is approximately $800 M.

Therefore, Rehabilitation would not meet the purpose and need of the project, and fails the evaluation.
V-2: New Viaduct Fully Improved to Current Standards would reconstruct the I-81 viaduct between Dr. Martin Luther King, Jr. East—formerly known as Castle Street—and Spencer Street. The new viaduct would have two travel lanes in each direction and operate at a 55 MPH speed limit. To accommodate current design standards, as well as features such as shoulders and medians, the viaduct would be wider than the existing viaduct. As shown on this slide, the new viaduct would be about 82 feet wide; the current viaduct is about 66 feet wide. At this time, we expect to acquire approximately 30 to 40 buildings to construct Alternative V-2.

The new viaduct could be the same height as the existing viaduct, or it could be about 5 to 10 feet taller. The cost of V-2 is estimated at $1.438 B.

Because this alternative would address project needs, could be constructed without difficult means and methods, and would have a reasonable cost in line with other project alternatives, it passes this level of screening and is recommended to be carried forward for further study.
V-3: New Viaduct with Substantial Design Improvements is very similar to V-2, but it differs at seven locations. By tightening the curves at these seven locations, which are shown in purple, V-3 would have 25 percent fewer real estate impacts than V-2. Vehicles would still be able to travel at 55 mph around the curves. In case of an accident or stranded motorist, emergency vehicles would be able to get to the scene. The cost of V-3 is estimated at $1.423 B.

Like Alternative V-2, Alternative V-3 passes this level of screening because it would address project needs, would not raise constructability concerns, and would have a reasonable cost.
V-4: New Viaduct with Considerable Design Improvements is similar to the previous two alternatives, except that this variation would tighten the horizontal curves further on five of the seven curves. The tighter curves at these seven locations would allow us to reduce the footprint of the viaduct even further, which means approximately 40 percent fewer buildings would need to be acquired under V-4 than would be under V-2.

V-4 would cost approximately $1.419 B.

It passes this level of screening, because it would address project needs, would not raise constructability concerns, and would have a reasonable cost.
V-5: New Stacked Viaduct was developed as a result of a suggestion from a member of the public during the scoping process. As shown on the slide, the new stacked viaduct would separate northbound and southbound traffic on two separate decks. The main advantage is that it be about 11 feet narrower than the existing viaduct. The new stacked viaduct would be about 50 feet tall, about 30 feet taller than the existing viaduct. The cost would be $1.588 billion.

The stacked viaduct would meet most project needs, but would sever access across Almond Street at Genesee Street to allow for a ramp connection between Harrison Street and northbound I-81. Genesee Street is a major east-west roadway between University Hill and Downtown. Since the new stacked viaduct would fail to maintain vehicle connections to, across, and along local streets in the project limits, it is not recommended for further study.
Alternative SL-1 would create a new boulevard along Almond Street. Initial traffic studies indicate that six lanes of traffic are likely to be needed to maintain an efficient flow of traffic between Downtown, University Hill, the Southside, and other neighborhoods. There are many ways to lay out a new boulevard along Almond Street, which in some areas has nearly 200 feet of available space. This is sufficient space to accommodate vehicles, bicycles, pedestrians, wide park-like medians, and other improvements.

The Boulevard would cost approximately $1.047 B.

Alternative SL-1 would address project needs, could be constructed without difficult means and methods, and would have a reasonable cost in line with other project alternatives. Therefore, NYSDOT recommends it for further study.
We are investigating two ways to connect the elevated I-81/I-690 interchange to the Boulevard.

In Option 1, the Boulevard would extend from Monroe Street to Erie Boulevard. The Boulevard would connect to the elevated I-690 and the former I-81 via a new interchange, called a single-point urban interchange. The new interchange would have only one signalized intersection, as opposed to the traditional two signals.

In Option 2, the Boulevard would extend from Monroe Street to McBride Street. In this case vehicles would pick up speed, heading northbound, as the road gradually transitions from a Boulevard to an interstate around Butternut Street.
The next two street-levels alternatives would make improvements to both Almond Street and a combination of other local streets. They differ in that one envisions Almond and other local streets as one-way streets, and the other would make them two-way streets. Because traffic would be routed to other local streets under SL-2 and SL-3, Almond Street would need fewer than six traffic lanes, which would shorten crosswalks.

Under the **One-Way** Almond Street and Other Local Streets Alternative, Almond Street would be one-way northbound from Harrison Street to the connection with I-690. South of Harrison Street, it would be a two-way street. One or more other streets would be used by southbound traffic, for example, Townsend Street or Clinton Street, as shown in the diagram.

Under the **Two-Way** Almond Street and Other Local Streets Alternative, Almond Street and one or more other streets would both serve two-way traffic.

Alternatives SL-2 and SL-3 would each cost about $1.067 Billion. Both would meet project needs, would not raise constructability concerns, and would have reasonable costs. Thus, both are recommended for further study.
All street-level alternatives would route some traffic to I-481, which would be designated as the new I-81. Therefore, all of them would require improvements to I-481.

At this time, it looks like no building acquisitions are needed to make these improvements to I-481, which would basically consist of adding traffic lanes at three stretches of the highway—as you can see here—and reconstructing the two existing I-81/I-481 interchanges. These interchanges would be slightly enlarged to fully meet today's design standards.
Four tunnel concepts were considered: two below Almond Street, along the existing footprint of the I-81 viaduct, one west of the viaduct, and one east of the viaduct. All the tunnels would fully meet today’s design standards. All would place the highway underground and reconstruct the street above with similar type of improvements we are proposing for the street-level alternatives--aesthetic and urban design treatments, and enhancements for pedestrians and bicyclists.

None of the tunnel options are recommended for further study due to a combination of access impacts, property impacts, constructability issues, and costs.

The tunnels along Almond Street would require new ramp connections, and these would result in a number of local streets being removed or turned into dead-end streets, substantially diminishing access between Downtown and Northside. In addition, soil and water table conditions below Almond Street would require difficult construction practices that would result in a lengthy construction period. Almond Street would be closed to traffic for much of the duration of construction.

The Townsend Street tunnel was explored to see if it would be possible to keep the viaduct open during construction. However, Townsend Street, like Almond Street, has similar subsurface conditions, requiring the same difficult construction means. In addition, the alternative would require substantial building acquisitions along the new tunnel.

The Eastern Alignment tunnel was suggested by a member of the public to avoid the
The first two tunnels would run along Almond Street and differ primarily in their length.

One would build the underground highway from Martin Luther King East—formerly known as Castle Street—to Butternut Street, a distance of about two miles; this tunnel would cost approximately $2.651 billion. The other would build a tunnel from MLK East to East Genesee Street, about one mile, and cost about $1.761 B.

A surface street on top of the tunnel would serve local traffic.

There are two important concerns with a tunnel on Almond Street. First, construction of new ramp connections between the tunnel and I-690 would require that a number of local streets be removed or turned into dead-end streets. This would substantially diminish access between Downtown and Northside.

The second concern involves difficult construction practices owing to the conditions below Almond Street. In addition to a high water table and difficult soil conditions, the water underneath Almond Street is saline, which requires special disposal methods, and all subsurface utilities would need to be relocated. Because of these subsurface conditions, cut-and-cover construction would be needed, resulting in a lengthy construction period. Therefore the viaduct and Almond Street would need to be closed to traffic for much of the duration of construction.

For these reasons, the Almond Street tunnels are not considered reasonable, and NYSDOT recommends that they not advance for further study in the DEIS.
A “depressed highway” is a highway that is open to the air and sunken below street level. We looked at two depressed highway concepts: from East Adams Street to Butternut Street—about 1¼ miles long—and from East Adams Street to East Genesee Street, approximately a half-mile long.

These alternatives would create a sunken highway about 25 feet below surface, which would be designed to fully meet today’s standards. Several overpasses would be built at key locations over this depressed highway to provide connections; otherwise, it would be open to the sky on top.

The longer depressed highway would cost about $1.751 B, and the shorter one would cost about $1.503 B.

The depressed highways would each have ramp connections to I-690. To construct these ramps, we would need to sever several streets where they currently cross Almond Street. In addition, as discussed for the tunnel alternatives, the subsurface conditions along Almond Street are not favorable for construction below the existing surface and would require difficult means and methods. The viaduct and Almond Street would need to be closed for much of the duration of construction.

For these reasons, we believe that the depressed highways are not reasonable.
Finally, we looked at two concepts that would reroute I-81 to the west of the current highway.

The first would be a Western Bypass, an idea that emerged during the I-81 corridor study. The bypass would consist of a new highway that would travel around western Syracuse. Once that is built, we would remove the existing highway through Downtown.

The Western Bypass would cost about $2.446 B. It would require that we buy a substantial amount of land for the new highway. We estimate that somewhere between 70 and 200 acres of land would be needed, depending on the route of the new highway. This land would include the acquisition of several homes and businesses, which could result in the removal of more than 100 buildings. For this reason, we do not think the Western Bypass is reasonable.

The second concept is a new highway along West Street, and it would cost about $1.326 billion. This concept was presented in the corridor study, and it also was raised by a member of the public, who called it the Salt City Circuit. The West Street concept would route I-81 along West Street to I-690. The existing section of I-81 between the railroad and I-690 would be replaced by a boulevard or surface street. The West Street concept would require new right-of-way, including properties on both sides of West Street, which could include 70 to 90 buildings. It would diminish local access in the West Street area, which would be very disruptive to the community during and after construction. For these reasons, the West Street concept is not considered reasonable.
In addition to the features described previously, the alternatives recommended for further study would incorporate several other potential highway, bicycle, and pedestrian improvements. These common features would be the same for each alternative, and will be further developed as the alternatives are refined for the Draft EIS.

The build alternatives would provide the two currently missing connections at the I-81/I-690 interchange; that is, they would provide direct connections between eastbound I-690 and northbound I-81, as well as between southbound I-81 and westbound I-690.

We are also exploring ways to improve access to Downtown and University Hill along I-690.

At the West Street interchange (Exit 11), we are considering options to allow for the new ramp connections between I-81 and I-690. Either the existing, elevated ramps over the highway would be improved, or the ramps would be replaced with a signalized, street-level intersection, with West Street passing under I-690. (The latter option would be consistent with the City’s initiative to calm traffic on West Street.)

At Teall Avenue (Exit 14), the interchange could be modified to simplify traffic movements and decrease congestion, thereby improving access to University Hill. A single-point urban interchange would control all traffic with one signal, rather than the existing two signals that are there today. This would be an efficient and safe way to move large volumes of vehicles in a compact space.

In addition, all alternatives would incorporate local street improvements featuring design elements intended to improve safety and connectivity for pedestrians and bicyclists. Features could include pavement markings, signal modifications, and treatments to narrow crossings and
I have described the 17 different ideas that we have developed, and our recommendation on the alternatives that we should study in more detail. In summary, NYSDOT recommends that the No Build Alternative, which is legally required; Alternatives V-2, V-3, and V-4, which would build a new viaduct; and Alternatives SL-1, SL-2, and SL-3, which would replace the highway with a street-level roadway, be studied further.

Please be aware that we continue to investigate these alternatives, as well as their potential effects on the social, environmental, and economic vitality of the area. We also want to hear your input on these recommendations, and those recommended for elimination.

Our Final Scoping Report will make the final recommendation of the alternatives that should be studied in the EIS, and those that should be eliminated.
We will be accepting written comments through the scoping comment period, which closes at the end of September 2, 2014. We have comment forms on hand at these meetings, or you could submit your comments through the project website, or mail the comment forms or letters to us at the address on the comment form.

Once we have received all your comments, we will prepare a Final Scoping Report. The Final Scoping Report will identify the alternatives that we will study in the EIS. It will also summarize the comments that we receive from you and respond to those comments. We expect to complete the Final Scoping Report this fall.

For more information, please visit us at the project website, i81opportunities.org. The website will be continually updated throughout the entire project, or stop by at the project’s outreach center, which is open Tuesday through Thursday from 11:00 a.m. to 2:00 p.m. You can review all the materials from the scoping meeting there.

Thank you for coming tonight, and thank you for your interest in the I-81 Viaduct Project.