MEETING SUMMARY

Meeting Date: Wednesday, May 28, 2014
Location: I-81 Opportunities Outreach Center at the Carnegie Building, Syracuse
Event: Sustainability Stakeholders’ Advisory Working Group (SAWG) Meeting 2

Attendees:

Project Team Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Frechette</td>
<td>NYSDOT</td>
</tr>
<tr>
<td>Joseph Flint</td>
<td>NYSDOT</td>
</tr>
<tr>
<td>Jon Adams</td>
<td>NYSDOT</td>
</tr>
<tr>
<td>George Doucette</td>
<td>NYSDOT</td>
</tr>
<tr>
<td>Mark Grainer</td>
<td>NYSDOT</td>
</tr>
<tr>
<td>Jim Davis</td>
<td>NYSDOT</td>
</tr>
<tr>
<td>Kathryn Wolf</td>
<td>TWMLA</td>
</tr>
<tr>
<td>Jonathan Peet</td>
<td>TWMLA</td>
</tr>
<tr>
<td>Howard Ungar</td>
<td>Parsons</td>
</tr>
<tr>
<td>Rita Campon</td>
<td>Parsons</td>
</tr>
<tr>
<td>Carlos Lopez</td>
<td>Parsons</td>
</tr>
<tr>
<td>Peter Liebowitz</td>
<td>AKRF</td>
</tr>
<tr>
<td>Chris Calvert</td>
<td>AKRF</td>
</tr>
<tr>
<td>Steve George</td>
<td>C&S</td>
</tr>
<tr>
<td>Andrew Obernesser</td>
<td>EDR</td>
</tr>
</tbody>
</table>

SAWG Participants:

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Ashley</td>
<td></td>
</tr>
<tr>
<td>John Balloni</td>
<td></td>
</tr>
<tr>
<td>Ed Bogucz</td>
<td></td>
</tr>
<tr>
<td>David Bottar</td>
<td></td>
</tr>
<tr>
<td>Emmanuel Carter</td>
<td></td>
</tr>
<tr>
<td>James D’Agostino</td>
<td></td>
</tr>
<tr>
<td>Robert Haley</td>
<td></td>
</tr>
<tr>
<td>Marilyn Higgins</td>
<td></td>
</tr>
<tr>
<td>Minch Lewis</td>
<td></td>
</tr>
<tr>
<td>David Mankiewicz</td>
<td></td>
</tr>
<tr>
<td>Paul Mercurio</td>
<td></td>
</tr>
<tr>
<td>Sharon Owens</td>
<td></td>
</tr>
<tr>
<td>Andrew Schuster</td>
<td></td>
</tr>
<tr>
<td>William Simmons</td>
<td></td>
</tr>
<tr>
<td>Mike Stanton</td>
<td></td>
</tr>
<tr>
<td>Gregg Tripoli</td>
<td></td>
</tr>
<tr>
<td>Frank Kobliski</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Mark Frechette, NYSDOT’s I-81 Project Director, opened the meeting by reiterating that the purpose of the Sustainability Stakeholders’ Advisory Working Group (SAWG) is to provide a forum for dialogue and feedback during the environmental review process. He thanked the group for their participation and the dialogue during the first SAWG. Mr. Frechette stated many of the SAWG members have taken the opportunity to reach out and directly contact him with comments and questions.

In response to various comments and conversations related to the Environmental Impact Statement (EIS) and to traffic, NYSDOT scheduled overviews of these topics during today’s SAWG meeting. In addition, to help address some of the discussions pertaining to transit, NYSDOT has invited Frank Kobliski, Executive Director of Centro, to become a participant in the SAWG to bring his perspective directly to the group.

Environmental Review Process

Chris Calvert of AKRF reviewed the environmental review process required by the National Environmental Policy Act of 1969. Mr. Calvert described the parallel track between the NEPA and State Environmental Review (SEQR) processes, the order of steps that the DOT will take in preparing the project’s Environmental Impact Statement (EIS), and the relationship of the scoping process to the subsequent steps involved in the environmental review.

Mr. Calvert described the process of screening alternatives during the scoping process. The screening process will determine which alternatives will be recommended to advance for further study and which will be recommended to be eliminated from further consideration.

A “no-build” alternative will serve as the benchmark for the comparison of other, “build” alternatives throughout the environmental review. The analysis of the no-build alternative will include the environmental, economic, and social impacts associated with the performance of continued long-term maintenance of the existing viaduct facility.

The NEPA process will determine whether each alternative that is carried through the environmental review will have impacts relative to these subject areas on the local and regional community. The EIS will identify both negative and positive potential impacts. Once negative impacts are identified, the NYSDOT will consider ways in which to avoid, minimize, or mitigate them. This process tends to refine the alternatives even further, so that the final alternatives are those that will provide the greatest benefit and the least negative impacts.

The project alternatives and their potential impacts will be described in the Draft Environmental Impact Statement (DEIS). The public will be invited to comment on the DEIS, and these comments will be responded to in a Final Environmental Impact Statement (FEIS), which also will include revisions to the DEIS. The FEIS will be followed by a Record of Decision (ROD), which will identify the preferred alternative and describe the basis for that decision.
Traffic
Howard Ungar of Parsons described the traffic studies that the project team will undertake as part of the environmental review process. NYSDOT is seeking to balance safety, efficiency, and livability throughout the regional transportation system with this project. The traffic study will help to describe the benefits and outcomes of each alternative as framed by the project purpose and need. It will help to identify potential traffic problems associated with different alternatives, and likewise help to improve project alternatives throughout the course of the environmental review.

The traffic study considers both a regional and local study area. The regional study area is consistent with the SMTC service area, which comprises the entirety of Onondaga County plus portions of Madison and Oswego Counties. The local study area includes the interstates and local streets that could be affected by the project. Not all local streets are included in the study area, but if there are some that are not currently included that may be affected, they would be added to the analysis. The local study area is quite large, as there are many streets and thousands of linkages to be considered as part of the traffic study.

Two models will be used to analyze traffic impacts: the SMTC Regional Travel Demand Model and a VISSIM traffic simulation model. During the scoping period, all alternatives will be analyzed using the SMTC model. As NYSDOT progresses into the environmental review, those alternatives that are advanced for further study will be analyzed and further refined using the VISSIM model. The analysis also will include an assessment of existing conditions and the potential traffic impacts of the no-build alternative, which serves as a benchmark. Other transportation considerations such as safety or signal modernization may be added to the analysis to further refine the alternatives and as refinements to the VISSIM model.

Viaduct Alternatives
Carlos Lopez of Parsons and Kathryn Wolf of Trowbridge Wolf Michaels discussed the progress that has been made with regard to the viaduct alternatives. Five viaduct alternatives are under consideration:

- V-1: Rehabilitation
 This alternative would continue maintenance of the existing viaduct to make sure that it can continue to facilitate traffic flow.

- V-2, V-3, and V-4: New viaduct concepts
 - These three alternatives would reconstruct a new viaduct along the general alignment of the existing viaduct. The new viaduct would be approximately 16 feet wider to provide full shoulders and could be either the same height as the existing viaduct or approximately five to ten feet higher. Each alternative would provide a fully directional interchange between I-81 and I-690, shift the ramp from northbound I-81 to eastbound I-690 to the left side of northbound I-81, and add a second lane to the ramp at Harrison Street. These three new viaduct alternatives vary based on their degree of compatibility with current FHWA design standards.
- **V-2**: New Viaduct Fully Improved to Current Standards would comply fully with current FHWA design standards. About 30 to 40 buildings may need to be acquired to accommodate the footprint of the new viaduct.

- **V-3**: New Viaduct with Substantial Design Improvements would meet most current design standards, with the exception of horizontal stopping sight distance, which has been slightly reduced from the V-2 option. The reduction in horizontal stopping sight distance would allow for a somewhat tighter curve in a few spots on the viaduct. Tightening of the viaduct’s footprint would reduce the number of building acquisitions by about 25 percent over those anticipated under V-2.

- **V-4**: New Viaduct with Considerable Design Improvements would further reduce the horizontal stopping sight distance at two of the curves, thereby further reducing potential building acquisitions by about 40 percent over those anticipated under V-2.

All three new viaduct concepts would also likely introduce new improvements to the street level below, such as enhanced pedestrian crossings, bicycle/pedestrian amenities, improved aesthetics, and better lighting.

- **V-5, Stacked Viaduct**
 - The stacked viaduct concept features northbound travel lanes stacked above southbound lanes. The new viaduct would be about 11 feet narrower than the existing facility. The stacked concept is complicated by a lack of adequate access between the northbound (top) lanes and the street grid below; because the northbound lanes would be much higher than they are currently, the ramps would have to be longer and could cut off connections to surface streets. Therefore the northbound lanes would likely serve through-traffic only.

Please note that additional information has been provided to clarify the responses given at the meeting.

Comments (C), Questions (Q), and Answers (A) included:

Q: Can a record of the discussion at the SAWGs be made available?

A: We are summarizing the meetings and will post the summaries on the project website.

Q: How many alternatives will be evaluated in the EIS?

A: We don’t know the specific number yet. At this stage we are screening the alternatives under consideration and recommending that some advance for further study and others be eliminated.

Q: How is the EIS’s problem statement identified?
A: It evolves through the EIS process but generally begins with broad questions. Even after the Record of Decision (ROD), which is the conclusion of the EIS process, we may need to go back and revisit content from the EIS.

Q: How long is the public review period on the Draft EIS (DEIS)?

A: The comment period after the publication of the DEIS is a minimum of 45 days, but sometimes comment periods are kept open longer than the minimum. For example, the minimum required comment period for scoping is 30 days, and ours will end up being closer to a year.

Q: How does transit fit into the EIS? Is there any budget for construction of transit facilities in the I-81 Viaduct Project?

A: The funding is separate between NYSDOT, transit, ports, airports, etc. Transit already exists here in Syracuse where it is managed by Centro, which has undertaken a transit study. The study made recommendations of Centro’s needs, such as a dedicated transit lane or other types of facilities such as a park-and-ride or bus stops along the project corridor. Centro is now assessing the feasibility of the recommendations of the study. Our obligation is to not do anything to preclude these improvements. Transit options could be different depending on the alternative. [Mr. Koblishki said that Centro has a strong history of partnering with NYSDOT, and coordination will continue throughout the project.]

C: As a point of beginning, a diagram should be developed with respect to the interaction between Centro and NYSDOT because long-term planning should be what the SAWG is about.

Q: Are the environmental impacts studied compared to other similar or precedent projects? Or is there another methodology for the studies?

A: The process sometimes considers precedents. FHWA and NYSDOT use a prescriptive process. Some procedures have been established through experience on other projects. The EIS requires public comment and needs to look closely at the local community. Partnering agencies, including EPA, also inform the process. There is a combination of many factors in the review. The Draft Scoping Report will start to lay out methodologies for the EIS. The general rule of thumb with respect to impacts is 1) avoid, 2) minimize, 3) mitigate. All categories have benchmarks that determine impact thresholds and mitigation approaches.

Q: Has there ever been an EIS that didn’t arrive at a single built solution but recommended a combination of the alternatives?

A: The implemented solution is the result of a long evolution, so it could be a hybrid of the individual alternatives studied in the EIS.

Q: Does the EIS include studying human and social impacts?

A: Yes.
Q: NEPA is a fifty-year-old law. What have we learned over those years that might make our process and solution better?

A: One of the most significant changes to the EIS process in the past fifty years is the public participation component. We now have a robust public outreach process. The EIS process continues to change as projects and laws change.

Q: Are there any precedents in the transportation category that predict future use rather than study an existing condition as current baseline?

A: Yes, the EIS always projects forward. By projecting forward we are better equipped to manage future demands and impacts. With respect to traffic, there could be an entire EIS section on Traffic Demand Management. Another way the EIS projects forward is by considering future development.

Q: How is an EIS impacted by existing municipal transportation plans?

A: Syracuse Metropolitan Transportation Council (SMTC) projects the demand, and by law transportation agencies must refer to the model of the metropolitan planning organization. SMTC has a planning document under way to project forward to 2050, which is the same design year as NYSDOT uses for the I-81 Viaduct Project. SMTC works with local agencies and municipalities to develop that plan. We will continue to work with SMTC throughout the project.

Q: Does the NYSDOT provide support for local communities to update their planning documents or vision plans? There may be impacts from the I-81 Viaduct Project on a variety of municipalities at several scales of governance.

A: That could occur separately through SMTC.

Q: Are there currently funds allocated specifically for local expertise to contribute to the EIS? There are many nationally respected experts in a variety of fields in and around Syracuse. Local experts will be scrutinizing the EIS.

A: We already have a consulting team in place but if needed would identify any consulting needs we don’t have.

Q: How does the EIS establish land value? Is it current value, future project value, open market, or another method?

A: There is a detailed established methodology NYSDOT uses and this will be documented in the land acquisition category of the EIS.

Q: How long is the EIS process?
A: The average used to be ten years, but we have been working more quickly and will likely get it done much quicker than that for I-81. However, the document will not be rushed; we need to ensure it is the most accurate and useful document possible.

Q: How does the project move forward when eliminating alternatives may alienate some percentage of the population?

A: Through the EIS, we make recommendations based on data. We can’t make everyone happy, but we do have to make sure that the project meets the project objectives. The public, including the SAWGs, helps get us there, along with the engineering.

Q: Do we know how many buildings will be acquired per alternative?

A: No, not yet. We only have a range of numbers because the specifics of each alternative are still evolving.

Q: Could the traffic model look at the potential impacts of a toll-free zone on I-90 in the Syracuse region?

A: The regional model would be able to evaluate that. We could anticipate that as the cost of travel decreases, drivers start to shift to that route.

Q: Is this the limit of the simulation model?

A: Yes, this is the study area of the traffic simulation model. But it should be noted that traffic flow patterns in this study area are developed from the SMTC’s regional travel demand model whose model area covers the City of Syracuse, Onondaga County, and portions of Madison and Oswego Counties. Therefore, traffic operational analysis in the simulation model captures both local and regional traffic impacts of the I-81 Viaduct Project.

C: One scenario should use the model to help optimize the existing street network by distributing traffic.

Q: What went into the selection of the streets that are under study in the model? For example, I don’t see Colvin Avenue on the map and that is a significant city street.

A: There could be content beyond what is shown here, but we also don’t need to include every street. We’ll follow up on Colvin to see how it gets addressed.

Q: How do you estimate future travel demands?

A: There are a variety of factors, including social and economic data. SMTC will do the estimate.

C: I suggest that you extend the study area along I-690 west to the I-90 interchange as that’s the primary route to Buffalo and points west.
A: That’s a good suggestion. We’ll look into that.

Q: What impact does poor light synchronization have on the model?

A: There is a huge impact, from the network scale all the way down to the individual intersection. There is great potential for improved efficiency.

C: A recent SMTC analysis showed significant positive benefits of signal timing improvements. The SMTC analysis found that there are greater traffic benefits in better signal timing than any one-way to two-way conversions of existing city streets. The SMTC analysis found that we could reduce traffic delay by up to 30 percent in the AM peak and 20 percent in the PM peak with coordinated traffic signalization. That means we can potentially add 30 percent more traffic and not have an appreciable impact to the flow of traffic on the city streets.

Q: Do you know which alternatives will be tested on the SMTC model?

A: No, not yet.

Q: Are there other baseline scenarios that could be tested on the SMTC model--such as a toll-free I-90, or an optimized signal pattern, or a robust transit system?

A: We could run the model on those scenarios if authorized by NYSDOT.

C: There may be a misperception that a robust transit system would make a meaningful impact to I-81 traffic. Even if we increased ridership on Centro by 400 percent, there wouldn’t be an impact on I-81 traffic.

C: Using the traffic model to run various scenarios is an opportunity to overcome the misperceptions and provide facts to people. The SAWG can provide the questions to NYSDOT to study with the model as a way to help sort out fact from fiction.

C: We need to be looking at the future. Transit oriented development is a safe bet the world over. Let’s do something better than what we are currently projecting.

A: Assumptions about land use are worked in to the SMTC model as there is a relationship between land use and infrastructure systems. We could calibrate the models using different land use scenarios. We need to be realistic to get the number of alternatives down, but there should be a few different land use scenarios built into those that remain.

Q: What is the date of the traffic count?

A: Traffic volume information on the freeway segments and at intersections relies on two sources; one is the field counts conducted for a number of midweek days in November 2013, and the other is traffic counts provided by NYSDOT and SMTC. Some of the latter traffic counts might not have been collected from the same year; those were adjusted so that all the counts would reflect traffic volumes for the same base year of 2013.
Q: Are traffic counts done during the school year?

A: Yes, the data also differentiates heavy vehicle traffic. In other words trucks are counted separately from passenger cars.

Q: Do you have the ability to change the model from existing condition to other design scenarios?

A: Yes, we will look at several alternatives, but not all sixteen. We will test various scenarios.

Q: Can you compare travel times from alternative to alternative? Or devise a way to allow people to enter two addresses and compare projected travel times between models in a fashion similar to mapping websites?

A: SMTC can’t do that efficiently because it takes several hours per scenario to process. But we could do that in a more aggregate way lumping origins and destinations together. We do intend to make projected travel times from the models available to the public.

Q: Can travel times and traffic impacts be evaluated for the construction periods?

A: Yes, we have started studying that already, and it is a requirement of the EIS to evaluate short-term, construction-related impacts.

Q: In the regional model, how significant are Routes 5 and 92 (Genesee and Erie Boulevard) in Dewitt?

A: We can use the regional model to give us some information on that.

Q: What is the difference between no-build and rehabilitation?

A: The No Build Alternative looks at the future without the project. It involves continuing the existing maintenance and operations programs. Rehabilitation would involve more extensive repair work and associated expenditure. It won’t fix everything but would extend the viaduct’s service life. The existing vehicular capacity would remain essentially the same. Essentially, rehabilitation would buy time.

Q: If a viaduct is the final solution, what might drive the choice between rehabilitation and total tear down and reconstruction?

A: There are many factors to consider, and we’ll get into that through the EIS.

Q: Are you going to identify the potential future development areas?

A: Yes, for the alternatives that move ahead into the EIS.

Q: Does speed limit relate to deficiencies and design standards? Can we look at any scenarios that intentionally reduce speed limits?
A: Yes. A minimum for the interstate is 55 mph. We won’t build to the same standards of 50 years ago. Not having shoulders and building to less than 55 mph are not acceptable for new construction. We need to meet basic parameters to be an interstate by today’s standards.

Q: Is there a local option to reduce the speed limit on V-2, V-3, and V-4?

A: We anticipate that V-2, V-3, and V-4 would have 55 mph driving speeds.

Q: What are the property impacts with V-2, V-3, and V-4?

A: We want to reduce the property acquisitions. Designs are still evolving, so we don’t have firm numbers, but we can look at ranges at this point. V-3 has 25 percent fewer impacts than V-2. V-4 has 40 percent fewer impacts than V-2.

Q: What are the design speeds of V-2, V-3, and V-4, and is reducing speed effective in making the roadway safer?

A: All three alternatives would be posted as 55 mph and designed to 60 mph. They vary in some features such as horizontal stopping sight distance. V-4 might require some 50 mph signs at the tightest curves to slightly slow down motorists. There are tradeoffs between making design adjustments, design speed, and reducing the property impacts.

C: My public safety experience tells us that there will be an increase in accidents as the design speed increases.

C: V-4 considerably reduces the non-standard features. It will be substantially better than the existing highway from an accident rate perspective.

Q: Would you assume that there would be an increase in accident rates from V-2 to V-4? Can this be predicted? We understand that even V-2 would have accidents, but what are the tradeoffs with respect to safety and property impacts?

A: We would need to complete our evaluation of the accident data to see if there is a correlation between specific features and accident rates. We are targeting specific areas that we already know to be problems to correct deficient elements to improve safety and avoid or minimize impacts to property.

Q: Have you looked at moving the on- and off-ramps or other subtle design changes to maximize the function of the highway?

A: Yes, for example, we looked at moving the northbound I-81 to westbound I-690 ramp to eliminate a weave and the resulting problems. We would look to ensure that the ramps and downstream signals are as efficient as possible to reduce stacking on the ramps. We have enough information to move forward at this point, and the design-level decision making is going to occur later. We are in scoping and need to stay at a broader level for now.
Q: How do you handle the on- and off-ramps for the stacked highway?

A: Ramps would be a lot longer to climb since they would be twice as high in the air, and in some cases connections to the local streets would not be provided.

Mark Frechette closed the meeting.