Appendix J-4
NYSDEC Threatened and Endangered Species Consultation
October 12, 2018

David Bimber,
Regional Permit Administrator
New York State Department of Environmental Conservation
615 Erie Blvd. West
Syracuse, NY, 13204

Re: Threatened and Endangered Species Consultation
Interstate 81 Viaduct Project
City of Syracuse, New York (Onondaga County)
PIN 3501.60

Dear Mr. Bimber:

Enclosed for your information, is the New York State Department of Transportation’s (NYSDOT) assessment of threatened and endangered species and our endangered species effect determination for the Interstate 81 Viaduct Project (“the Project”).

The NYSDOT reviewed the New York Natural Heritage Program database on September 13, 2018 and the United States Fish and Wildlife Service Information for Planning and Consultation database on September 14, 2018. Eighteen State-listed species are documented by the NYNHP as occurring within and/or adjacent to the four Study Areas. The species are listed in the table below along with the NYSDOT effect determination for each:

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Effect Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana bat</td>
<td>Myotis sodalis</td>
<td>Endangered</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Northern long-eared bat</td>
<td>Myotis septentrionalis</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Eastern massasauga</td>
<td>Sistrurus catenatus</td>
<td>Endangered</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>American hart's-tongue fern</td>
<td>Asplenium scolopendrium var. americanum</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Peregrine falcon</td>
<td>Falco peregrinus</td>
<td>Endangered</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Least bittern</td>
<td>Ixobrychus exilis</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Lake sturgeon</td>
<td>Acipenser fulvescens</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Seaside bulrush</td>
<td>Bolboschoenus maritimus ssp. paludosus</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Midland sedge</td>
<td>Carex mesochorea</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
<tr>
<td>Saltmarsh aster</td>
<td>Symphyotrichum subulatum var. subulatum</td>
<td>Threatened</td>
<td>Take Not Likely</td>
</tr>
</tbody>
</table>
Reflexed sedge | Carex retroflexa | Threatened | Take Not Likely
---|---|---|---
Straight-leaf pondweed | Potamogeton strictifolius | Endangered | Take Not Likely
Glomerate Sedge | Carex aggregate | Endangered | Take Not Likely
Marsh Arrow Grass | Triglochin palustris | Threatened | Take Not Likely
Ohio goldenrod | Oligoneuron ohioensis | Threatened | Take Not Likely
Troublesome sedge | Carex molesta | Threatened | Take Not Likely

As discussed in the enclosed assessment of threatened and endangered species, the proposed work under the Viaduct Alternative or Community Grid Alternative is not likely to result in a take of any of the above listed species; therefore, an Incidental Take Permit pursuant to 6 NYCRR Part 182 is not required. Should you have any questions or require further information, please contact Jessica Prockup at 518-417-6642.

Sincerely,

Daniel P. Hitt, RLA
Director, Office of Environment

DH/ja/jp/cl

Encl: Appendix J-4 I-81 Viaduct Project Assessment of State Listed Threatened or Endangered Species

cc: Mark Frechette, Project Director, NYSDOT, Region 3w/out encl
Appendix J-4

I-81 Viaduct Project
Assessment of State Listed Threatened or Endangered Species
Appendix J-4 Attachment 1

I-81 Viaduct Project
General Project Figures
J-4-1-1 through J-4-1-9
A. PROJECT DESCRIPTION

The New York State Department of Transportation (NYSDOT), in cooperation with the Federal Highway Administration (FHWA), has prepared a Draft Design Report/Draft Environmental Impact Statement (DDR/DEIS) for the Interstate 81 (I-81) Viaduct Project (the “Project”) in accordance with the requirements of the Council on Environmental Quality’s regulations for implementing the procedural provisions of the National Environmental Policy Act (NEPA) (40 CFR §1500-1508), the FHWA’s Environmental Impact and Related Procedures: Final Rule (23 CFR §771), the NYSDOT Procedures for Implementation of the State Environmental Quality Review Act (17 NYCRR Part 15), and the NYSDOT Project Development Manual.

The purpose of the Project is to address structural deficiencies and non-standard highway features while creating an improved transportation corridor through the City of Syracuse that meets the transportation needs and provides the infrastructure to support long-range transportation planning efforts.

As part of the environmental review, potential impacts of the Project’s reasonable alternatives to Federal and State-listed Threatened and Endangered wildlife species were assessed. This assessment of NYS Threatened and Endangered Species has been prepared to document the likelihood and severity of potential effects on listed species for each build alternative included in the DDR/DEIS in accordance with 6 NYCRR Part 182.

PROJECT ALTERNATIVES

NO BUILD ALTERNATIVE

The No Build Alternative would maintain the highway in its existing configuration, with ongoing maintenance and repairs to ensure the safety of the traveling public. The No Build Alternative would not meet the purpose and need for the Project, but it is examined to establish a baseline condition to evaluate the potential effects of build alternatives.

VIADUCT ALTERNATIVE

The Viaduct Alternative would reconstruct I-81 from between approximately Colvin Street and Hiawatha Boulevard and would reconstruct I-690 between Leavenworth Avenue and Lodi Street. The new viaduct would provide four, 12-foot (ft) wide travel lanes (a minimum of two in each direction), as well as inside and outside shoulders. The new viaduct would be approximately 10 to 15 feet higher than the existing one at some locations. The Viaduct Alternative would address nonstandard and nonconforming design features; reconstruct the existing I-81/I-690 interchange, providing all movements between I-81 and I-690 including those that do not exist today (between eastbound I-690 and northbound I-81 and between southbound I-81 and westbound I-690); improve connections to local streets; and implement local traffic, bicycle, and pedestrian enhancements (see Attachment 1, Figures J-4-1-1 through J-4-1-4). Noise barriers are also proposed as part of the Viaduct Alternative within the four Study Areas described below.

COMMUNITY GRID ALTERNATIVE

The Community Grid Alternative would demolish the existing viaduct between the New York, Susquehanna and Western Railway bridge and the I-81 and I-690 interchange and would reconstruct I-690 between Leavenworth Avenue and Beech Street. It would construct new or reconfigured interchanges on I-690 (i.e., West Street, Crouse Avenue, and Irving Avenue) and on the remaining section of I-81 north of the I-690 interchange. The portion of the existing I-81 between its north and south interchanges with the existing I-481 would be reclassified as a business loop of I-81 (BL 81), and I-481 would be re-designated as I-81. The Community Grid Alternative would disperse traffic throughout the City of Syracuse, improving connectivity and reducing congestion.
the city grid by promoting broader use of the existing street network. Vehicular traffic would be channeled through Almond Street and along parallel corridors such as Crouse Avenue, Irving Avenue, James Street, Oswego Boulevard, State Street, and Townsend Street, as well as other local streets that would have the capacity to accommodate this traffic. The Community Grid Alternative would also improve connections to local streets and implement traffic, bicycle, and pedestrian enhancements (see Attachment 1, Figure J-4-1-1 and Figures J-4-1-5 through J-4-1-9). Noise barriers are also proposed as part of the Community Grid Alternative within the four Study Areas described below.

STUDY AREAS

There are four distinct portions of the overall Project Area (referred to as “Study Areas” (see Attachment 1, Figure J-4-1-1): (1) the Central Study Area, (2) the I-481 South Study Area, (3) the I-481 East Study Area, and (4) the I-481 North Study Area. Under the Viaduct Alternative, the Project would be limited to the Central Study Area with the exception of noise barriers that would be constructed along the interstate in portions of the I-481 South Study Area, the I-481 East Study Area, and the I-481 North Study Area. Under the Viaduct Alternative, the Project would involve roadway work in the Central Study Area and potential noise walls in the I-481 North, East and South Study Areas. Under the Community Grid Alternative, the Project would involve roadway work in all four Study Areas.

METHODOLOGY

The study area for State- and Federally listed threatened, endangered, special concern species and significant ecological communities follows the guidance outlined in New York State Department of Transportation’s (NYSDOT) *The Environmental Manual* (TEM) Endangered and Threatened Species, Section 4.9.3.

The NYSDOT reviewed the New York Natural Heritage Program (NYNHP) database on September 13, 2018 and the United States Fish and Wildlife Service Information for Planning and Consultation database on September 14, 2018 for all Study Areas. The IPaC “Official Species Lists” for the Project are provided in I-81 DDR/DEIS Appendix J-6.

B. STATE-LISTED SPECIES WITHIN AND/OR ADJACENT TO THE STUDY AREAS

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>NYNHP Record Study Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana bat</td>
<td>Myotis sodalis</td>
<td>Endangered</td>
<td>I-481 South / I-481 East</td>
</tr>
<tr>
<td>Northern long-eared bat</td>
<td>Myotis septentrionalis</td>
<td>Threatened</td>
<td>I-481 South / I-481 East</td>
</tr>
<tr>
<td>Eastern massasauga</td>
<td>Sistrurus catenatus</td>
<td>Endangered</td>
<td>I-481 North</td>
</tr>
<tr>
<td>American harp’s-tongue fern</td>
<td>Asplenium scolopendrium var. americanum</td>
<td>Threatened</td>
<td>I-481 South</td>
</tr>
<tr>
<td>Peregrine falcon</td>
<td>Falco peregrinus</td>
<td>Endangered</td>
<td>Central²</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>Threatened</td>
<td>Central</td>
</tr>
<tr>
<td>Least bittern</td>
<td>Ichobrychus exilis</td>
<td>Threatened</td>
<td>I-481 North</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
<td>Threatened</td>
<td>I-481 North</td>
</tr>
<tr>
<td>Lake sturgeon</td>
<td>Aipenser fulvescens</td>
<td>Threatened</td>
<td>Central⁴</td>
</tr>
<tr>
<td>Seaside bulrush</td>
<td>Bolboschoemus maritimus ssp. paludosus</td>
<td>Threatened</td>
<td>Central⁴</td>
</tr>
<tr>
<td>Midland sedge</td>
<td>Carex mesochorea</td>
<td>Threatened</td>
<td>Central / I-481 South</td>
</tr>
<tr>
<td>Saltmarsh aster</td>
<td>Symphyotrichum subulatum var. subulatum</td>
<td>Threatened</td>
<td>Central</td>
</tr>
<tr>
<td>Reflexed sedge</td>
<td>Carex retriflexa</td>
<td>Threatened</td>
<td>Central / I-481 South</td>
</tr>
<tr>
<td>Straight-leaf pondweed</td>
<td>Potamogeton strichnolius</td>
<td>Endangered</td>
<td>Central</td>
</tr>
<tr>
<td>Glomerate Sedge</td>
<td>Carex aggregate</td>
<td>Endangered</td>
<td>Central²</td>
</tr>
<tr>
<td>Marsh Arrow Grass</td>
<td>Triglochin palustris</td>
<td>Threatened</td>
<td>I-481 South</td>
</tr>
<tr>
<td>Ohio goldenrod</td>
<td>Oligoneuron ohioense</td>
<td>Threatened</td>
<td>I-481 East</td>
</tr>
<tr>
<td>Troublesome sedge</td>
<td>Carex molesta</td>
<td>Threatened</td>
<td>I-481 North</td>
</tr>
</tbody>
</table>

Notes:
† Documented within the vicinity of the Central Study Area.
‡ Documented within the Central Study Area.

Sources: NYNHP database review September 14, 2018; USFWS IPaC Official Species List dated September 13, 2018.
As shown in Table J-4-1 above, 18 State-listed species are documented by the NYNHP as occurring within and/or adjacent to the four Study Areas.

INDIANA BAT

The Indiana bat is a Federal and State-listed Endangered temperate, insectivorous bat. Indiana bats emerge from the caves or mines in which they hibernate in early spring; males then disperse and remain solitary until mating season at the end of the summer, and pregnant females form maternity colonies in which to rear their young. Maternity roosts, roosting sites of post-lactating females, and roosting sites of solitary males are usually under loose bark or in the crevices of trees. Indiana bat roosting sites have been documented in numerous species of deciduous trees; however, tree availability, diameter, height, bark characteristics, and sun exposure appear to be more important factors in roost site selection than tree species (Kurta 2004, USFWS 2007). Roost trees in New York (Britzke et al. 2006) and elsewhere (USFWS 2007) are typically in trees with a diameter greater than 16 inches and a height taller than 52 feet, but roosts in smaller trees are not uncommon (USFWS 2007). Trees are usually dead or nearly dead and decayed (Menzel et al. 2001, Kitchell 2008).

Indiana bats often roost near forest gaps or edges where trees receive direct sunlight for much of the day (Callahan et al. 1997, Menzel et al. 2001). Habitats used by Indiana bats during summer are varied and include riparian, bottomland/floodplain, and upland forests (Humphrey et al. 1977, Britzke et al. 2006, Watrous et al. 2006) often within highly fragmented agricultural landscapes (Murray and Kurta 2004, Watrous et al. 2006, USFWS 2007). They will forage in the forest canopy, over open fields, over impounded waterbodies, along riparian corridors, and along forest edges (USFWS 2007). Maternity colonies are commonly located in areas with abundant natural or artificial freshwater sources (Carter et al. 2002, Kurta et al. 2002, Watrous et al. 2006, and USFWS 2007). Spring and autumn habitats of Indiana bats have not been well described, but appear to be largely similar to their summer habitat (Britzke et al. 2006, USFWS 2007). During autumn, Indiana bats mate and deposit fat stores in preparation for winter hibernation. Hibernacula are typically in caves or abandoned mines where ambient temperatures remain above freezing (USFWS 2007).

SITE SPECIFIC INFORMATION

The Indiana bat is listed by the USFWS IPaC System as having the potential to occur within all four Study Areas (Central, I-481 South, I-481 East, and I-481 North). The NYNHP has records of Indiana bat hibernaculum and roost trees adjacent to the I-481 South and the I-481 East Study Areas. The NYNHP has no records of Indiana bat hibernating or roosting within 2.5 miles of the Central or I-481 North Study Areas.

The woodland fragments bordering the east and west sides of the I-481 South Study Area may represent suitable roosting and foraging habitat for Indiana bats. Therefore, Indiana bats are considered to have the potential to occur within the I-481 South Study Area. The closest summer roosting habitat to the I-481 East Study Area that is suitable for Indiana bats is a woodland area (i.e., floodplain forest) east of I-481 and south of I-90 (New York State Thruway). Suitable roost trees are likely abundant in this area and two utility rights-of-way intersecting the woodland may provide foraging corridors and commuting routes for Indiana bats. The wooded area around Butternut Creek to the east of the southern end of the I-481 East Study Area may also support Indiana bats. Indiana bats are less likely to occupy habitats within the Central Area or I-481 North Study Area due to the high density of urban development. However, Indiana bats may still have the potential to occur in these areas on rare occasions.
NORTHERN LONG-EARED BAT

The northern long-eared bat is a Federal and State-listed Threatened temperate, insectivorous bat that hibernates in caves and mines during winter, and then emerges in early spring to disperse to summer habitat. Like Indiana bats, the males remain solitary until mating season at the end of the summer and the pregnant females form maternity colonies in which they rear their pups. Summer habitat typically includes mature, closed-canopy, upland and riparian forest within heavily forested landscapes (Ford et al. 2005, Henderson et al. 2008), usually within about 60 miles of the hibernaculum (Caceres and Barclay 2000, USFWS 2014).

The northern long-eared bat is considered to be an interior forest-dependent species that is sensitive to urbanization and fragmentation, and requires large tracts of unbroken forest for both foraging and breeding (Foster and Kurta 1999, Broders et al. 2006, Henderson et al. 2008, Segers and Broders 2014). Unlike many other bats of the Northeast, northern long-eared bats will commonly glean prey from leaves and other surfaces rather than strictly hawking flying insects in the air, and are thereby well-adapted to foraging in cluttered, structurally complex, forest interior habitat (Owen et al. 2003, Lacki et al. 2007). Most foraging occurs in the forest mid-story (Brack and Whitaker 2001, Harvey et al. 2011, USFWS 2014) in interior areas with a tall and closed canopy (Owen et al. 2003, Patriquin and Barclay 2003, Adams 2013). Northern long-eared bats do not concentrate along riparian corridors or other linear landscape features as much as strictly aerial-foraging species do (Owen et al. 2003, Ford et al. 2005, Harvey et al. 2011, USFWS 2014), and most radio-telemetry and acoustic studies have found that they typically avoid roads and other sharp forest edges (Owen et al. 2003, Patriquin and Barclay 2003, Carter and Feldhammer 2005, Morris et al. 2010, Segers and Broders 2014), where prey availability is expected to be lower than in the forest interior (Owen et al. 2003). Mature forest is considered to be the most important foraging habitat for the northern long-eared bat (USFWS 2013, 2014).

Roost trees are also usually within large tracts of intact forest, close to the core and away from large clearings, roads, or other sharp edges (Menzel et al. 2002, Owen et al. 2003, Carter and Feldhammer 2005). Roosts are usually in cavities or, less often, under exfoliating bark of large-diameter trees that form a high and dense canopy (Foster and Kurta 1999, Menzel et al. 2002, Carter and Feldhammer 2005; reviewed by Barclay and Kurta 2007). However, the USFWS (2014) considers trees as small as three inches DBH to be potential roost sites. Northern long-eared bats, including lactating females, will use many different summer roost trees, often switching roosts every one to five days and moving hundreds of feet between successive locations (Menzel et al. 2002, Owen et al. 2002, Johnson et al. 2009).

SITE SPECIFIC INFORMATION

The northern long-eared bat is listed by the USFWS IPaC System as having the potential to occur within all four Study Areas. The NYNHP has no records of this species roosting within 1.5 miles of any of the four Study Areas, although a northern long-eared bat hibernaculum is located adjacent to the I-481 South, the I-481 East, and the Central Study Areas.

As discussed above, northern long-eared bats are sensitive to urbanization and fragmentation, and prefer large tracts of interior forest for roosting and foraging. The woodland fragments bordering the east and west sides of the I-481 South Study Area may be too small and have too high of an edge to area ratio to be preferred habitat of northern long-eared bats, but there remains a marginal possibility that this species could occur within these sections of the I-481 South Study Area.

The closest summer habitat to the I-481 East Study Area that is most suitable for northern long-eared bats is the woodland area east of I-481 and south of I-90 (New York State Thruway). This approximately one-mile wide and 0.7-mile long woodland is bisected by two utility rights-of-way, but
may be large enough to support northern long-eared bats. Suitable roost trees are likely abundant in this area. The wooded area around Butternut Creek to the east of the southern end of the I-481 East Study Area may also represent suitable habitat for the northern long-eared bat. Because of the well-documented avoidance of urban areas and sharp edges by northern long-eared bats (Owen et al. 2003, Patriquin and Barclay 2003, Carter and Feldhammer 2005, Morris et al. 2010, Segers and Broders 2014), habitats within the Central and I-481 North Study Areas are also not considered suitable, and northern long-eared bats are less likely to occur in these areas.

EASTERN MASSASAUGA

The eastern massasauga is a Federally listed Threatened and State-listed Endangered rare and declining, range-restricted rattlesnake. It occurs in small, highly isolated populations from central New York State and southern Ontario to south-central Illinois and eastern Iowa. Population declines are primarily attributable to wetland drainage, habitat fragmentation, over-collecting, and now, the advancement of early successional vegetation into later successional stages in the few areas in which remnant populations persist (Gibbs et al. 2007). Only two populations of eastern massasauga are known to remain within all of New York State (Gibbs et al. 2007).

Unlike other rattlesnakes, eastern massasaugas hibernate for the winter individually rather than communally. Hibernation sites used by eastern massasaugas in New York State populations are usually under shrubs and sphagnum hummocks. They emerge from hibernation in April and then return in late September. Reproduction occurs only every two years, with birthing of live young usually occurring between mid-August and mid-September. Female eastern massasaugas are believed to mate during one summer, and then give birth the next summer (Gibbs et al. 2007).

SITE SPECIFIC INFORMATION

The USFWS IPaC System lists the eastern massasauga as having the potential to occur in each of the four Study Areas. The NYNHP has a record of the eastern massasauga occurring adjacent to the I-481 North Study Area. There are no NYNHP records of the eastern massasauga occurring within or adjacent to the I-481 South, the I-481 East, or the Central Study Areas.

Mud Creek, on the eastern edge of the I-481 North Study Area, has a hydrological connection to this known population via small, potentially ephemeral, unnamed NYSDEC Class C streams that wind through and under roads and other heavily developed areas. The eastern massasauga exhibit extremely small activity ranges and restricted movements within overlapping territories, and have not been found to disperse or migrate outside of their known area (Johnson 2000). Other habitat types used by eastern massasaugas in other portions of the species’ range in the U.S. include fens, marshes, and wet prairies (Gibbs et al. 2007).

Wetlands within the I-481 North Study Area are limited to drainage ditches and highly disturbed roadside segments of Mud Creek and disturbed common reed-dominated and forested wetlands along I-481 and within the quadrants at the northern I-81/I-481 interchange. As such, no habitat that is appropriate for the eastern massasauga is present in the I-481 North Study Area, and eastern massasaugas are therefore not expected to occur in the area. Roads, residential neighborhoods, and other human-altered landscapes are barriers to eastern massasauga movements (Moore and Gilingham 2006), and movement of eastern massasaugas out of their current location to the east along Mud Creek and its tributaries within the I-481 North Study Area is considered extremely unlikely. These streams extend through heavily developed areas and are culverted under major roads in several locations, and therefore would not be expected to be used by eastern massasaugas to disperse outside of their current location. Additionally, as previously noted, telemetry studies of eastern massasaugas have not observed any movements of individuals outside of their current location via these streams or otherwise (Johnson and Breisch 1993; Johnson 1995, 2000). For each of these reasons, eastern
massasaugas would not be expected to occur within the I-481 North Study Area. Eastern massasaugas are also not expected to occur within the other three Study Areas of the Project because they lack appropriate habitat and are fully disconnected and distant from their current known location.

AMERICAN HART'S-TONGUE FERN

American hart's-tongue fern is a Federally and State-listed Threatened perennial and evergreen fern. It requires deep shade and grows in cool, moist, rocky, calcareous substrates, usually within small cracks in large rocks (NYNHP 2015). American hart's-tongue fern is found in close association with outcrops of dolomitic limestone and other calcareous rocks. It has been found in cave entrances, gorges, and sinkholes in mature hardwood forests (NYNHP 2015, USFWS 2015). Populations of American hart's-tongue fern tend to be scattered due to its habitat requirements. In New York, native populations of this fern are restricted to two counties in the vicinity of Syracuse: Onondaga and Madison Counties (USFWS 2012). It is known to occur in glacial plunge basins in these two counties (NYNHP 2015). In Onondaga County, American hart's-tongue fern is known to occur in four locations (USFWS 2012).

SITE SPECIFIC INFORMATION

The USFWS IPaC System search indicated that there was the potential for American hart's-tongue fern to occur only within the I-481 South Study Area. The NYNHP has records of the American hart's-tongue fern occurring adjacent to the I-481 South Study Area. There are no NYNHP records of the American hart's-tongue fern occurring within or adjacent to the I-481 North, the I-481 East, or the Central Study Areas.

Overall, habitat for this species (i.e., deep shade in cool, moist, rocky, calcareous substrates), is not present within the disturbed habitats of the Central, I-481 East, I-481 North or I-481 South Study Areas. However, the I-481 South Study Area contains a disturbed roadcut cliff/slope community. A targeted search for American hart’s-tongue fern was conducted in this ecological community on April 18, 19, and 20, 2017 within the project limits of the I-481 South Study Area. American hart’s-tongue fern was not found within the I-481 South Study Area.

PERIGRINE FALCON

The peregrine falcon is a State-listed endangered bird of prey. Populations have grown dramatically since the 1980s, however, asperegrine falcons have become increasingly common in urban areas and demonstrated a tolerance of human disturbance and an ability to exploit resources in human-modified environments (Cade et al. 1996, White et al. 2002). It has been suggested that peregrine falcons will tolerate almost any level of human activity taking place below their nest provided that the nest is inaccessible (Ratcliffe 1972) to humans or predators. Urban peregrine falcons appear to have particularly high tolerance thresholds compared with those in more remote areas (White et al. 2002). In several cities within New York State, peregrine falcons nest on bridges and high-rise buildings among high levels of noise and human activity associated with the urban environment (Frank 1994, Cade et al. 1996, Loucks and Nadaraski 2005).

1 Roadcut cliff/slope is a sparsely vegetated cliff or steep slope, along a road, that was created by blasting or digging during road construction (Edinger et al. 2014).
SITE SPECIFIC INFORMATION

The NYNHP database indicated that there is a peregrine falcon nest adjacent to the Central Study Area. Therefore, peregrine falcons have the potential to occur within the Central Study Area. There were no known occurrences of the peregrine falcon within the I-481 South, I-481 East, and I-481 North Study Areas, and peregrine falcons are not expected to occur in these areas due to a lack of nearby tall structures for nesting.

Bald Eagle

The bald eagle is a State-Threatened bird of prey that was removed from the Federal Endangered Species List in 2007 because of a strong recovery from population declines that had occurred throughout the mid- and late-1900s. Bald eagle populations in New York State in particular have grown dramatically over the past few decades (Nye 2008). There were a state record-breaking 323 breeding pairs estimated to be in New York as of the most recently released census information from 2016 (NYSDEC 2017). The recovery of bald eagles throughout their range is largely attributable to their consistently increasing, generational habituation to human activity and development (Johnson 2010, Guinn 2013). According to the NYNHP database, non-breeding 2 bald eagles have been observed perching and foraging along the southeastern shoreline of Onondaga Lake. This area is on the periphery of the Central Study Area and therefore non-breeding bald eagles have the potential to occur there. There are no other lakes or rivers that would provide suitable habitat for breeding or non-breeding bald eagles in the I-481 South, I-481 East, and I-481 North Study Areas, and NYNHP has no records of bald eagles occurring in their vicinity.

SITE SPECIFIC INFORMATION

As stated above, the NYNHP has records of bald eagles perching and foraging along the shoreline of Onondaga Lake. They have also been observed foraging in nearby rivers (Seneca and Oswego) during winter in areas where water usually remains open most years. The area of Onondaga Lake mapped as bald eagle foraging area is within and adjacent to the Central Study Area. The bald eagle is not expected to occur within I-481 South, I-481 East, and I-481 North Study Areas.

Least Bittern

The least bittern is a State-listed Threatened wading bird that inhabits freshwater and brackish marshes with tall, dense vegetation including cattails, sedges, reeds, bulrushes, sawgrass, smartweed, arrowhead, buttonbush, and other emergent wetland vegetation. It can also be found at the edges of lakes and rivers with emergent and tall vegetation, but prefers marshes with scattered bushes or other woody growth. The least bittern is tolerant of moderate levels of human disturbance and can sometimes be found in urban settings (Poole et al. 2009).

SITE SPECIFIC INFORMATION

The NYNHP has a record of least bitterns nesting within 600 feet of the I-481 North Study Area. Wetland habitat within and around the I-481 North Study Area is limited to drainage ditches along I-481 and within the quadrants of the I-81 and I-481 highway interchange, and is not suitable for least bitterns. The closest potentially suitable habitat is to the west, west of South Bay Road and south of

2 Non-breeding refers to birds that may exist at any time of year, including birds that do not breed during the nesting season (e.g., juveniles). USFWS considers the breeding season in NY to be between January 1 and October 1.
I-81 Viaduct Project Assessment of State Listed Threatened or Endangered Species

Frontage Road. Least bitterns are not considered to have the potential to occur within the I-481 North Study Area.

There are no records of least bitterns anywhere else in the Project Area. As such, the least bittern is not expected to occur within the Central, I-481 South, or the I-481 East Study Areas.

NORTHERN HARRIERS

The northern harrier is a State-Threatened bird of prey. Local populations have gradually declined in recent decades likely in response to habitat development and reversion of much of the state’s former farmland into forest. Northern harriers primarily occupy open areas such as grasslands, old fields, pastures, croplands, and salt marshes during both the breeding and non-breeding periods (Smith et al. 2011). They are present in New York year-round (Post 2008). NYNHP has a record of northern harriers breeding within 1.5 miles of the I-481 North Study Area. There is potentially suitable breeding and non-breeding habitat for northern harriers in this vicinity of the I-481 North Study Area, in the marshes of the Cicero Swamp Wildlife Management Area and agricultural fields approximately 1.2 to 1.5 miles to the east, and the marshes of a large wetland complex approximately 1.2 miles to the west, along State Route 481. Non-breeding northern harriers might also be expected to occur in the open fields of the Syracuse Hancock International Airport. There is no suitable breeding or non-breeding habitat for northern harriers within the I-481 North Study Area, which is primarily limited to roadside grass, small and degraded common reed-dominated wetlands bordering drainage ditches and within clover leaves of the I-481 and I-81 interchange, and small fragments of woodland. None of these habitat types would support breeding or non-breeding northern harriers, and therefore, northern harriers are not considered to have the potential to occur within the I-481 North Study Area. NYNHP has no records of northern harriers within or near any of the other study areas and northern harriers are not expected to occur in those other study areas.

LAKE STURGEON

The lake sturgeon is a State-listed Threatened freshwater fish that occurs in several lakes, rivers, and canals in northern New York State. The NYNHP has records of lake sturgeon occurring in Onondaga Lake. Onondaga Creek and Ley Creek, which are both tributaries to Onondaga Lake, are within the Central Study Area. Thus, lake sturgeon has the potential to occur in the Central Study Area. Lake sturgeon do not have the potential to occur within the I-481 South, I-481 East, and I-481 North Study Areas due to a lack of potential habitat, and the NYNHP has no records of lake sturgeon occurring in these areas.

SEASIDE BULRUSH

Seaside bulrush is a State-listed Threatened perennial plant. In New York, it is found in Long Island salt marshes and inland salt ponds and marshes (NYNHP). It is listed as an OBL (i.e., almost always occurs in wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). Its habitat includes a variety of open, saltwater, or brackish wetlands. Seaside bulrush may also be found in disturbed areas like roadsides and ditches. In New York, confirmed ecological communities associated with seaside bulrush include artificial pools, brackish interdunal swales, brackish intertidal mudflats, coastal salt ponds, and high salt marshes (NYNHP). These communities are not present within the Project Area. Furthermore, seaside bulrush was not found during targeted searches (conducted on August 30, 2017) for this species in the Central Study Area. For these reasons, seaside bulrush has a low potential to occur in the Central Study Area. Seaside bulrush is not expected to occur within the I-481 South, I-481 East, and I-481 North Study Areas.
MIDLAND SEDGE

Midland sedge is a State-listed Threatened plant found in dry, sandy soils in maritime grasslands, oak woods, mowed cemeteries, railroads, paths, and fields. It is listed as an UPL (i.e., almost always occurs in non-wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). Its range in New York is from Long Island to the Hudson Highlands and central New York. In New York, confirmed ecological communities associated with midland sedge include Hempstead Plains grasslands, maritime grasslands, mowed lawn, rocky summit grasslands, and successional old fields (NYNHP). A known population exists in the vicinity of the Central Study Area and I-481 South Study Area (NYNHP). However, Midland sedge was not found during targeted searches (conducted on June 27 and 28, 2017) for this species in the Central Study Area. Midland sedge is not expected to occur within the I-481 East or the I-481 North Study Areas.

SALTMARSH ASTER

Saltmarsh aster is a State-listed Threatened species that is found in coastal areas in salt or brackish marshes, along tidal channels and creeks, in the swales of coastal dunes, and occasionally in disturbed habitats that are salt influenced. It is listed as a FACW (i.e., usually occurs in wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). In New York, saltmarsh aster primarily occurs along the shores of Long Island, Brooklyn, and Staten Island and along the shore of the Hudson River north to Putnam and Rockland Counties. However, there is a documented population of saltmarsh aster near Syracuse (NYNHP). In New York, confirmed ecological communities associated with saltmarsh aster include brackish interdunal swales, brackish meadows, brackish tidal marshes, coastal salt ponds, estuarine riprap/artificial shores, high salt marshes, inland salt marshes, salt shrubs, and sea level fens (NYNHP). These communities are not present within the Project Area. Additionally, saltmarsh aster was not found during targeted searches (conducted on August 30, 2017) for this species in the Central Study Area. Due to habitat requirements, saltmarsh aster has a low potential to occur within the Central Study Area. Saltmarsh aster is not expected to occur in the I-481 South, I-481 East, or I-481 North Study Areas.

REFLEXED SEDGE

Reflexed sedge is a State-listed Threatened plant that prefers successional areas with open tree canopies. Its habitat includes dry-mesic to mesic deciduous forests, forest openings and edges, and rocky summits and ledges. Reflexed sedge is known to grow along and in paths, forest roads, and abandoned railroad lines. It can grow in poor soil conditions or waste places as well. It is listed as a FACU (i.e., usually occurs in non-wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). In New York, it has been documented throughout the Hudson Valley and in scattered locations within central New York. Confirmed ecological communities associated with reflexed sedge include acidic talus slope woodlands, Appalachian-oak hickory forests, Appalachian oak-pine forests, red cedar rocky summits, rocky summit grasslands, and successional southern hardwoods (NYNHP). As described above, successional southern hardwoods communities occur within the Project Area. Furthermore, a known population of reflexed sedge exists in the vicinity of the Central Study Area and I-481 South Study Area. Reflexed sedge was not found during targeted searches conducted in the Central Study Area (conducted on June 27 and 28, 2017). There are no records of reflexed sedge

3 Surveys for this species will be conducted during its fruiting period (middle of June through the middle of August [NYNHP]) in 2019 to confirm its presence or absence within the I-481 South Study Area.

4 Surveys for this species will be conducted during its fruiting period (middle of May through the middle of July [NYNHP]) in 2019 to confirm its presence or absence within the I-481 South Study Area.
within the I-481 East or I-481 North Study Areas. Therefore, this species has a low potential to occur within the I-481 South, I-481 East, and I-481 North Study Areas.

STRAIGHT-LEAF PONDWEED

Straight-leaf pondweed is a State-listed Endangered species which occurs in shallow water habitats of natural and artificial lakes and slow-moving streams. It prefers alkaline water. It is listed as an OBL (i.e., almost always occurs in wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). New York is the eastern edge of this species’ range; it is found in central and eastern New York (NYNHP). In New York, straight-leaf pondweed does not have confirmed associated ecological communities (NYNHP). Straight-leaf pondweed was not found during targeted searches (conducted on August 30, 2017) for this species in the Central Study Area. Therefore, given its habitat requirements, straight-leaf pondweed has the low potential to occur within wetlands and surface waters of the Central Study Area. Straight-leaf pondweed is not expected to occur in the I-481 South, I-481 East, or I-481 North Study Areas.

GLOMERATE SEDGE

Glomerate sedge is a State-listed Endangered plant identified by NYNHP as occurring within the vicinity of the Central Study Area. In New York, only a few populations have ever been reported, all of which are in portions the southern tier of western New York, central New York and in southeastern New York (NYNHP). Its habitat includes calcareous soils in meadows, thickets, open forests, moist woods, cemeteries, and ditches. It is not listed as a wetland plant by the 2016 National Wetland Plant List (Lichvar 2016). In New York, confirmed associated ecological communities associated with glomerate sedge are not documented by NYNHP. Within the Central Study area, thicket, cemetery, and ditch habitats are present. Therefore, this plant has the potential to occur within the Central Study Area. Glomerate sedge has not been documented as occurring in the vicinity of the I-481 South, I-481 East, or I-481 North Study Areas.

MARSH ARROW GRASS

Marsh arrow grass is a State-listed Threatened plant identified by NYNHP as occurring in the vicinity of the I-481 South Study Area. Its habitat includes open calcareous mires, soligenous mires, limestone areas, peat bogs, open meadows, narrow coastal strips, and salt marshes (Metcalf et al. 1917, Norton 1933, Thomas et al. 1980, Van Straaten et al. 1982, Wheeler 1980) brackish and salt marshes and flats, river or stream floodplains, marshes, intertidal, subtidal, shores of rivers or lakes (GoBotany 2018). It is listed as an OBL (i.e., almost always occurs in wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). New York is located at the southern range-limit for this species. Given its habitat requirements, the potential for marsh arrow grass to occur within the I-481 South Study Area would be limited to the narrow channel located in the vicinity of the proposed Noise Barrier 9. Marsh arrow grass has not been documented as occurring in the vicinity of the Central, I-481 East, or I-481 North Study Areas.

OHIO GOLDENROD

Ohio goldenrod is a State-listed Threatened plant that grows in rich fens including sloping and marl fens. It occasionally occurs in rich peat swamps, calcareous dripping cliffs, and banks of large rivers in the State. In New York, confirmed ecological communities associated with Ohio goldenrod include marl fen, red maple-tamarack peat swamp, rich graminoid fen, and rich sloping fen (NYNHP). Other habitats non-specific to New York include marshes, wet sand dunes, along rivers, swamps, beaches, and other moist places, calcareous bogs, wet prairies, and sandy shores (NYNHP). It is listed as an OBL (i.e., almost always occur in wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). None of the confirmed ecological communities listed above is present within the Project Area.
Given its habitat requirements, Ohio goldenrod has a low potential to occur within the wetlands and surface waters of the I-481 East Study Area, and it was not found during targeted surveys (conducted on August 28, 29, and 30, 2017). Ohio goldenrod is not documented or expected to occur in the Central, I-481 South, or I-481 North Study Areas.

TROUBLESOME SEDGE

Troublesome sedge is a State-listed Threatened plant that prefers open habitats associated with dry fields, wet fields, and native grasslands. This species can often have a somewhat weedy habit where it occurs in fields, roadides, bottomlands, open woods, on dry to wet, often heavy, calcareous soils. Less frequently it occurs on open edges of rivers, woodlands, talus slopes, and in waste areas. It is listed as a FAC (i.e., occurs in wetlands and non-wetlands) plant by the 2016 National Wetland Plant List (Lichvar 2016). In New York, confirmed ecological communities include alvar grassland, alvar pavement grassland, inland calcareous lake shore, oak openings, and successional old field (NYNHP). Given its habitat requirements, troublesome sedge has the potential to occur within the I-481 North Study Area. However, it was not found during targeted surveys (conducted on August 30, 31, and September 1, 2017). Troublesome sedge has not been documented or expected to occur in the vicinity of the Central, I-481 East, or I-481 South Study Areas.

C. EFFECTS OF VIADUCT ALTERNATIVE

INDIANA BAT

The Viaduct Alternative would primarily involve work within the Central Study Area. However, as part of this alternative, noise barrier walls would be constructed in portions of the other three Study Areas. Attachment 1. Figure J-4-1-2 through Figure J-4-1-4 show the approximate location of the proposed work in the Central Study Area and the noise barrier walls in the I-481 South, I-481 East and I-481 North Study Areas.

Under the Viaduct Alternative approximately 340.37 acres of total land would be impacted as a result of the roadway footprint (186.18 acres) in the Central Study Area and the noise barrier footprint (154.19 acres) in the Central, I-481 East, and I-481 North Study areas. Approximately 302.49 acres of terrestrial cultural ecological communities (178.62 acres roadway and 123.87 acres noise barrier footprints), 25.46 acres of successional southern hardwoods (6.47 acres roadway and 18.99 acres noise barrier footprints), 4.45 acres of successional old field (0.59 acres of roadway and 3.86 acres noise barrier footprints), 5.20 acres of successional shrubland (0.28 acres roadway and 4.92 acres noise barrier footprints), 2.76 acres (0.22 acres of roadway and 2.54 acres noise barrier footprints) of floodplain forest, and 0.01 acres of freshwater wetland (noise barrier footprints) would be permanently affected. The majority of permanent land use change would occur immediately adjacent to the I-81 and I-690 interchange, and all tree removal would be limited to within 100 feet of existing road surfaces. Although some trees that would be cleared are large enough to be potential roost trees, their location within small and isolated forest fragments in a heavily urbanized area of downtown Syracuse, or immediately adjacent to interstate highway greatly limits their quality and the likelihood of them being used as roost sites by Indiana bats.

As per Table J-4-2 below, the NYNHP has no records of Indiana bat roost trees within 2.5 miles of the Central Study Area, where the majority of construction would occur, and the closest hibernaculum is more than 2.5 miles away. The clearing of a total of 9.11 acres (9.06 acres [roadway] and 0.05 acres [noise barriers]) of trees in the Central Study Area, 0.03 acres (noise barriers only) of trees in the I-481 East Study Area, and 0.70 acres of trees (noise barriers only) in the I-481 North Study Area would not be expected to represent a substantial loss of potential roosting habitat for Indiana bats. Roost tree availability in general is unlikely to currently be a limiting factor in the regulation of Indiana bat population sizes now that there are so few tree-roosting bats on the landscape due to white
nose syndrome (WNS). As WNS has greatly reduced the size of bat populations, unoccupied roosting habitat has become increasingly available for remaining bats (USFWS 2016a). Colonies and social networks of Indiana bats have been shown to be robust to the loss of previously used roost trees, which is likely due to the ephemeral nature of the dead and dying trees that they usually use as roost sites (Silvis et al. 2014a). Urban street trees and trees within small and isolated fragments within 100 feet of existing roadways, like those that would be removed for the Viaduct Alternative, would remain common throughout the Syracuse metropolitan area and available for any Indiana bats potentially displaced from the affected portion of the Central Study Area. For these reasons, the Viaduct Alternative would not likely adversely affect roosting habitat availability for Indiana bats in the Syracuse area. As a precaution to avoid any potential for direct impacts, all tree clearing would be restricted to the winter hibernation period (November 1 – March 31) when Indiana bats would be in the hibernaculum. This and all other aspects of tree clearing for the Viaduct Alternative would be consistent with the tree removal Avoidance and Minimization Measures in the USFWS/FHWA Range-wide Programmatic Consultation for Indiana Bat and Northern Long-eared Bat (USFWS/FHWA RWPC).

Tree removal associated with the installation of noise barrier walls in the I-481 East and I-481 North Study Areas would total approximately 0.73 acres. Tree removal would not be required in the I-481 South Study Area as a result of the installation of Noise Barrier 9 (see Attachment 3, Figure J-4-3-10). Per Table J-4-2 below, the NYNHP has records of Indiana bat roost trees within 0.2 miles from the I-481 South Study Area and 2.5 miles from the I-481 East Study Area. Additionally, the NYNHP has records of an Indiana bat hibernaculum within 2.5 miles from the I-481 South Study Area and greater than 2.5 miles from the I-481 East Study Area. There are no known Indiana bat roost trees or hibernaculum with 2.5 miles of the I-481 North Study Area. Attachment 3, Figure J-4-3-1 through Figure J-4-3-6 show the approximate area of tree removal for the Viaduct Alternative.

Indiana bats are known to sometimes also roost under bridges in lieu of natural roosting habitat (Keeley and Tuttle 1999). There are bridges present in the Central Study Area that would be modified, removed, or replaced as part of the construction of the Viaduct Alternative. These bridges would be inspected in accordance with the FHWA New York Division Bridge Bat Survey Form during the roosting season (April 1 to September 30) to determine if there is any evidence of bats actively using them. In the event that bats are observed on any of the bridges, all bridge Avoidance and Minimization Measures in the USFWS/FHWA RWPC would be adopted to the greatest extent possible. FHWA would be consulted in the event that any of the measures could not be implemented to determine the proper course of action.

The areas where tree clearing would occur in downtown Syracuse and along I-81 and I-481 for the Viaduct Alternative are unlikely to represent quality foraging habitat for Indiana bats. The trees are in heavily urbanized areas, all within 100 feet of the existing roadway and closely bound by development. Foraging Indiana bats have been found to avoid roads, often reversing course when a road is encountered. This appears to be due more so to the presence of motor vehicles than the physical presence of the road itself (Zurcher et al. 2010, Bennett and Zurcher 2013). The areas where tree clearing would occur for the Viaduct Alternative are subjected to high levels of motor vehicle traffic noise, which is expected to limit the likelihood that they are used for foraging by Indiana bats. Loss of these trees would not be expected to substantially affect foraging habitat availability for the region’s population of Indiana bats.

Dust generated during construction of the Viaduct Alternative would be minimized in accordance with NYSDOT air quality standards and is unlikely to affect any Indiana bats potentially present in the Central Study Area. A dust control plan would be implemented. Measures that could be included in the dust control plan include:
I-81 Viaduct Project Assessment of State Listed Threatened or Endangered Species

- requiring trucks that are hauling loose material to be equipped with tight-fitting tailgates and have their loads securely covered, and
- the use of water sprays for demolition, excavation, and transfer of soils to ensure that materials would be dampened as necessary to avoid the suspension of dust into the air.

Such measures would effectively reduce emissions from dust-generating construction activities and the potential for impacts to Indiana bats.

Noises generated during construction of the Viaduct Alternative would not be expected to affect any Indiana bats potentially occurring in the Central Study Area, given that noise levels in the area are already extremely high under existing conditions. Current occurrence of Indiana bats in general have been known to roost near construction sites, major airports, and other extremely noisy locations (Sparks et al. 1998, Keeley and Tuttle 1999, Niver 2009), suggesting that while they are roosting, they are tolerant of loud noises and vibrations caused by human activity. Continued roosting of Indiana bats following the start of new construction activity has been observed and indicates a tolerance of and ability to acclimate to construction noises (ESI 2008, USFWS 2011). Foraging behavior of Indiana bats has also been found to be unaffected by extremely loud noises and reverberations, such as artillery fire on military bases (Shapiro and Hohmann 2005). Sounds generated by heavy construction equipment and similar sources typically fall well below the hearing and echolocation frequency ranges of bats, which may largely explain this tolerance of loud noises (Delaney and Grubb 2004, Niver 2009). In contrast, higher frequency noises like those of cars and light trucks can displace foraging Indiana bats and other Myotis species from an area (Schaub et al. 2008, Zurcher et al. 2010, Bennett and Zurcher 2013). Given that the portions of the Central Study Area where construction would occur are already chronically subjected to high frequency noises from motor vehicles, the heavy construction equipment noise that would be generated by the Project would be unlikely to affect roosting or foraging of Indiana bats, therefore construction of the Viaduct Alternative would not be expected to impact any Indiana bats potentially occurring in the Study Area. Similarly, operation of the Viaduct Alternative would be comparable to current traffic conditions and therefore would not elevate noise disturbance or vibration levels to an extent that would potentially affect Indiana bats. The sound barriers that would be constructed along portions of I-81 and I-481 would further avoid the potential for increased noise or visual disturbance in neighboring areas during operation of the Viaduct Alternative.

Temporary lighting used during construction and permanent lighting used during operation would follow the relevant Avoidance and Minimization Measures in the USFWS/FHWA RWPC. These include directing temporary construction lighting away from suitable habitat during the active season, using downward-facing, full cut-off lens lights during project operation, and directing lighting away from suitable habitat when installing new or replacing existing permanent lights.

Given that the Project under the Viaduct Alternative would limit tree clearing to the winter hibernation period (November 1–March 31), within 100 feet of existing roadways, is less than 2.5 miles from a hibernaculum and is less than 2.5 miles from a known roost tree, and will follow the applicable Avoidance and Minimization Measures of the USFWS/FHWA RWPC; NYSODT has made a preliminary effect determination of “take not likely” for the Indiana bat for the Viaduct Alternative.
NORTHERN LONG-EARED BAT

Attachment 1. Figure J-4-1-2 through Figure J-4-1-4 show the approximate location of the proposed work in the Central Study Area and the noise barrier walls in the I-481 South, I-481 East and I-481 North Study Areas. Approximately 302.49 acres of terrestrial cultural ecological communities (178.62 acres roadway and 123.87 acres noise barrier footprints), 25.46 acres of successional southern hardwoods (6.47 acres roadway and 18.99 acres noise barrier footprints), 4.45 acres of successional old field (0.59 acres roadway and 3.86 acres noise barrier footprints), 5.20 acres of successional shrubland (0.28 acres roadway and 4.92 acres noise barrier footprints), 2.76 acres (0.22 acres of roadway and 2.54 acres noise barrier footprints) of floodplain forest, and 0.01 acres of freshwater wetland (noise barrier footprints) would be permanently affected by the Viaduct Alternative. The remaining area of disturbance consists of impervious surface, ditches, mowed lawn with trees, successional old field, successional shrubland, wetland, and surface waters. All tree removal would be limited to within 100 feet of the existing road surface. As previously discussed in Section B, northern long-eared bats are sensitive to urbanization and avoid small forest fragments and sharp edges in favor of large tracts of interior forest for roosting and foraging, and are therefore not expected to occur in the Central Study Area’s heavily urbanized area of downtown Syracuse or immediately adjacent to I-81 and I-481 in the other Study Areas where the Project would be constructed. In addition to being within 100 feet of an existing roadway, all trees that would be removed in the Central Study Area for the Project are closely bound by city streets and other urban development in every other direction and are not considered to afford suitable roosting or foraging habitat for northern long-eared bats. As per Table J-4-2 below, the NYNHP has no records of northern long-eared bat roost trees within 1.5 miles of the Central Study Area, where the majority of construction would occur, and the closest hibernaculum is greater than five miles away.

The noise barriers that would be constructed in portions of the other Study Areas would be along segments of interstate highway that border densely developed residential neighborhoods and other areas where suitable forested habitat for northern long-eared bats is lacking. The clearing of a total of 9.11 acres (9.06 acres [roadway] and 0.05 acres [noise barriers]) of trees in the Central Study Area, 0.03 acres (noise barriers only) of trees in the I-481 East Study Area, and 0.70 acres of trees (noise barriers only) in the I-481 North Study Area would not be expected to represent a substantial loss of potential roosting habitat for Indiana bats. As previously noted for Indiana bats, roost tree availability is unlikely to be a limiting factor in the regulation of northern long-eared bat population sizes now that there are so few tree-roosting bats on the landscape due to WNS. Urban street trees and trees within small and isolated fragments within 100 feet of existing roadways, like those that would be removed for the Viaduct Alternative, would nevertheless remain common throughout the Syracuse metropolitan area and available for any northern long-eared bats potentially displaced from the affected area. Like Indiana bats, northern long-eared bats are also considered to be robust to the loss of previously used roost trees, which is likely due to the ephemeral nature of the dead and dying trees that they usually use as roost sites (Silvis et al. 2014b). For these reasons, the Viaduct Alternative would not likely adversely affect roosting habitat availability for northern long-eared bats in the Syracuse area. As a precaution to avoid any potential for direct impacts, however, all tree clearing

| Table J-4-2 Viaduct Alternative: Tree Cutting Distances for Indiana Bat |
|------------------|------------------|------------------|
| Central Study Area | >2.5 miles | >2.5 miles |
| I-481 South Study | <2.5 miles | <2.5 miles |
| I-481 East Study Area | <2.5 miles | <2.5 miles |
| I-481 North Study Area | >2.5 miles | >2.5 miles |

DRAFT 14 October 12, 2018
would be restricted to the winter hibernation period (November–March 31) when northern long-eared bats would be in the hibernaculum. This and all other aspects of tree clearing for the Viaduct Alternative would be consistent with the tree removal Avoidance and Minimization Measures in the USFWS/FHWA RWPC.

Tree removal associated with the installation of noise barriers in the I-481 East and I-481 North Study Areas would total approximately 0.73 acres. Tree removal would not occur within the I-481 South Study Area as a result of the installation of Noise Barrier 9 (see Figure J-4-3-10). Per Table J-4-3 below, the NYNHP has no records of northern long-eared bat roost trees within 1.5 miles from the I-481 South, I-481 East, or I-481 North Study Areas. The NYNHP has records of a northern long-eared bat hibernaculum less than five miles from the I-481 South Study Area and less than five miles from the I-481 East Study Area. There are no known northern long-eared bat hibernaculum within 5 miles of the I-481 North Study Area. Attachment 3, Figures J-4-3-1 through Figure J-4-3-5 show the approximate area of tree removal for the Viaduct Alternative.

Like Indiana bats, northern long-eared bats have been found to sometimes roost under bridges in lieu of natural roosting habitat (Feldhamer et al. 2003). There are bridges present in the Central Study Area that would be modified, removed, or replaced as part of the construction of the Viaduct Alternative. These bridges would be inspected in accordance with the FHWA New York Division Bridge Bat Survey Form during the roosting season (April 1 to September 30) to determine if there is any evidence of bats actively using them. In the event that any bats are observed on any of the bridges, applicable bridge Avoidance and Minimization Measures in the USFWS/FHWA RWPC would be adopted to the greatest extent possible. FHWA would be consulted in the event that any of the measures could not be implemented to determine the proper course of action.

The areas where tree clearing would occur in the Central Study Area in downtown Syracuse and along I-81 and I-481 in the other study areas for the Viaduct Alternative do not represent suitable foraging habitat for northern long-eared bats. The trees are in a heavily urbanized area, all within 100 feet of the existing roadway. Northern long-eared bats require large tracts of unbroken forest for foraging, and they strongly avoid roads and other sharp edges (Owen et al. 2003, Patriquin and Barclay 2003, Carter and Feldhammer 2005, Morris et al. 2010, Segers and Broders 2014). Tree clearing for the Viaduct Alternative would not eliminate foraging habitat availability for the region’s population of northern long-eared bats.

Dust generated during construction of the Viaduct Alternative would be minimized in accordance with NYSDOT air quality standards and unlikely to affect any northern long-eared bats potentially present in the area. A dust control plan would be implemented. Measures that could be incorporated into the dust control plan may include, but are not limited to:

- Trucks that haul loose material be equipped with tight-fitting tailgates and their loads be securely covered.
- The use of water sprays for demolition, excavation, and transfer of soils to ensure that materials would be dampened as necessary to avoid the suspension of dust into the air.

Such measures would effectively reduce emissions from dust-generating construction activities and the potential for impacts to northern long-eared bats.

Noises and vibrations generated during construction of the Viaduct Alternative would not be expected to affect northern long-eared bats given that they are not expected to occur in the area and noise and vibration levels in the area are already extremely high under existing conditions. Presence of northern long-eared bats under these conditions would inherently indicate a high tolerance of, and habituation to, the anthropogenic disturbances that are associated with urban and roadside environments. To our knowledge, there have not been any studies of the sensitivity of northern long-eared bats to
construction noises or other forms of noise disturbance. However, northern long-eared bats have been observed roosting in areas with substantial noise and vibration levels, such as near the Indianapolis International Airport (Sparks et al. 1998) and under bridges (Feldhamer et al. 2003), which suggests that they can be tolerant of chronic anthropogenic noise disturbances and reverberations while roosting if the habitat is otherwise suitable. Like Indiana bats, loud noises like those generated by heavy construction equipment are well below the expected hearing and echolocation frequency ranges of northern long-eared bats (Delaney and Grubb 2004, Niver 2009). Higher frequency noises, however, like those of cars and light trucks, can displace foraging *Myotis* bats (Schaub et al. 2008, Zurcher et al. 2010, Bennett and Zurcher 2013) like northern long-eared bats from an area. Given that the Central Study Area is already chronically subjected to high frequency noises from motor vehicles, the heavy construction equipment noise that would be generated by the Project would be unlikely to affect roosting or foraging northern long-eared bats, therefore construction of the Viaduct Alternative would not be expected to impact any northern long-eared bats potentially occurring in the area. Similarly, operation of the Viaduct Alternative would be comparable to current traffic conditions and therefore would not elevate noise and vibration levels to an extent that would potentially affect northern long-eared bats. Sound barriers that would be constructed along portions of I-81 and I-481 would further avoid the potential for increased noise or visual disturbance in neighboring areas during operation of the Viaduct Alternative.

Temporary lighting used during construction and permanent lighting used during operation would follow the relevant Avoidance and Minimization Measures in the USFWS/FHWA RWPC. These include directing temporary construction lighting away from suitable habitat during the active season, using downward-facing, full cut-off lens lights during project operation, and directing lighting away from suitable habitat when installing new or replacing existing permanent lights.

Given that the Project under the Viaduct Alternative would limit tree clearing to the winter hibernation (November 1–March 31), is more than 0.5 miles from a hibernaculum and more than 150 feet from a known roost tree, is within 100 feet of existing roadways, and will follow the applicable Avoidance and Minimization Measures of the USFWS/FHWA RWPC; NYSDOT has made a preliminary effect determination of “take not likely” for the northern long-eared bat for the Viaduct Alternative.

Table J-4-3

<table>
<thead>
<tr>
<th>Viaduct Alternative: Tree Cutting Distances for Northern Long-Eared Bat</th>
<th>Roost Trees</th>
<th>Hibernaculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Study Area</td>
<td>>1.5 miles</td>
<td>>5.0 miles</td>
</tr>
<tr>
<td>I-481 South Study</td>
<td>>1.5 miles</td>
<td><5.0 miles</td>
</tr>
<tr>
<td>I-481 East Study Area</td>
<td>>1.5 miles</td>
<td><5.0 miles</td>
</tr>
<tr>
<td>I-481 North Study Area</td>
<td>>1.5 miles</td>
<td>>5.0 miles</td>
</tr>
</tbody>
</table>

EASTERN MASSASAUGA

The Viaduct Alternative would primarily involve work within the Central Study Area, which encompasses a heavily urbanized portion of downtown Syracuse that does not contain any habitat capable of supporting eastern massasaugas. Construction in the three other Study Areas for the Viaduct Alternative would be limited to the construction of sound barrier walls alongside portions of I-481. **Attachment 1, Figure J-4-1-2** through **Figure J-4-1-4** show the approximate location of the proposed work in the Central Study Area and the noise barrier walls in the I-481 South, I-481 East and I-481 North Study Areas. As discussed in greater detail below, under “Community Grid Alternative” no habitat within the I-481 South, I-481 East, or I-481 North Study Areas is considered suitable for eastern massasaugas and there are no NYNHP records of this species occurring anywhere.
locally aside from an isolated population adjacent to the I-481 North Study Area. For these reasons, eastern massasaugas are not expected to occur in any portion of the Project Area. Therefore, NYSDOT has made a preliminary effect determination of “Take Not Likely” for the eastern massasaugas for the Viaduct Alternative.

AMERICAN HART’S-TONGUE FERN

As described above, the NYNHP database indicates that the American hart’s-tongue fern has been documented adjacent to the I-481 South Study Area and the USFWS IPaC database indicated the species had the potential to occur within the I-481 South Study Area. The NYNHP has no known occurrences of the American hart’s-tongue fern within or adjacent to the I-481 North, I-481 East, or Central Study Areas and there is no suitable habitat for this species within or adjacent to these Study Areas. Additionally, the American hart’s-tongue fern did not come up on the USFWS’s IPaC database search for these three Study Areas. Attachment 1, Figure J-4-I-4 shows the approximate location of the proposed work in the I-481 South Study Area.

On July 13, 2017, a site investigation was conducted in the vicinity of proposed Noise Barrier 9 in the I-481 South Study Area to determine if habitat for American hart’s-tongue fern is present. Habitat in the vicinity of Noise Barrier 9 consists of a disturbed right-of-way. It was determined that no suitable habitat for American hart’s-tongue fern is present in the vicinity of the proposed Noise Barrier 9.

As discussed above, American hart’s-tongue fern’s preferred habitat is not present within the I-481 East, the Central or the I-481 North Study Areas and no species were found during a field survey in the I-481 South Study Area. Therefore, NYSDOT has made a preliminary effect determination of “Take Not Likely” for the American Hart’s tongue fern for the Viaduct Alternative.

PEREGRINE FALCON

Peregrine falcons currently nest in an artificial nest box on a building adjacent to the Central Study Area, and thus, have the potential to occur throughout the Central Study Area. The peregrine falcons in this area are already accustomed to an urban environment and would not be further impacted by additional noise or activity from the operation of the Project. Peregrine falcons will tolerate almost any level of human activity taking place below their nest provided that the nest itself is inaccessible (Ratcliffe 1972). As such, the peregrine falcon would not be significantly adversely affected by the operation of the Viaduct Alternative.

The known peregrine falcon nest box is located outside of the area that may be disturbed by construction. Should construction or construction staging take place near the nest box, then measures would be implemented by the Contractor to avoid disruptions to the nest box, including the establishment of any required buffers or monitoring based on coordination with NYSDEC.

There have been no known occurrences of peregrine falcons in the I-481 South, I-481 East, or I-481 North Study Areas. As such, the peregrine falcon nest box as well as the falcons themselves would not be adversely affected by the operation of the project. For these reasons, NYSDOT has made a preliminary effect determination of “take not likely” for the peregrine falcon for the Viaduct Alternative.

BALD EAGLE

As discussed above, NYNHP has a record of non-breeding bald eagles perching and foraging along the shoreline of Onondaga Lake. This area is on the periphery of the Central Study Area and therefore non-breeding bald eagles have the potential to occur there. The sensitivity of bald eagles to human disturbance is greatest during courtship and nest-building, which take place in New York between December and March, and then declines as the nesting period progresses and eventually ends
Decades ago, bald eagles were considered to be sensitive to human disturbance even outside of the breeding season (e.g., Stalmaster and Newman 1978, Nye 1994, Stalmaster and Kaiser 1997), with concern that repeated displacement from important roosting and foraging areas could waste energy reserves at a time of year when energy demands are high (Stalmaster and Gessaman 1984). Since then, however, bald eagles have shown a rapid and substantial generational habituation to human disturbance during both the breeding and non-breeding periods, and an increasing tolerance of development, including urbanization (Johnson 2010, Guinn 2013). In many parts of their range, bald eagles are increasingly nesting and occurring during the non-breeding periods in areas with heavy levels of human activity where they would almost never be found only a few decades ago (Millsap et al. 2004, Guinn 2013). This includes nesting by bald eagles in recent years within major metropolitan areas, including New York City, Washington D.C., Philadelphia, and Pittsburgh (Sullivan 2016). The use of Onondaga Lake in the City of Syracuse by bald eagles is another such example of bald eagles having acclimated to an urban area with extremely high levels of disturbance. Any non-breeding bald eagles utilizing the lake and its shorelines inherently display a high tolerance of human activity as well as degraded habitat.

The Viaduct Alternative would include the construction and operation of a reconstructed system of ramps connecting I-81 to Park Street, State Route 370, and Old Liverpool Road. The closest construction activity to Onondaga Lake would consist of road repaving approximately 200 feet away from the southeastern shoreline. At slightly greater distances, the road reconstruction would likely include louder activities such as jack-hammering and pile-driving. The USFWS Bald Eagle Management Guidelines (USFWS 2007) do not provide guidance on buffer distances for construction disturbance near habitats used by non-breeding eagles but recommend a minimum buffer of 330 feet from nests. Given the reduced sensitivity of bald eagles to disturbance during the non-breeding period compared to the nesting period (USFWS 2007) and the high existing levels of disturbance and urban setting of the area of Onondaga Lake where non-breeding bald eagles have been observed, a minimum distance of 200 feet from the closest area of construction to the closest point of lakeshore where non-breeding eagles could occur is expected to be more than sufficient for reducing the likelihood of any potential disturbance from construction noise. In the event that any bald eagles would be displaced by construction noise from the small area of the lake and shoreline near the site of construction, the effect would be highly temporary, and the eagles would be able to easily distance themselves from the activity and utilize nearby areas of the lake and its shoreline without negative consequence. Operation of the Viaduct Alternative would not bring motor vehicle traffic any closer to the Onondaga Lake shoreline than at present or increase existing levels of disturbance. Given that paved roads with heavy traffic are already present near the shoreline in this area, operation of the Viaduct Alternative would not eliminate quality habitat or otherwise permanently alter the current conditions on Onondaga Lake for non-breeding bald eagles. The Viaduct Alternative would not create disruptive activities or development in the direct flight paths of eagles between roost sites and important foraging areas, and in all other aspects would be in accordance with the USFWS Bald Eagle Management Guidelines’ “recommendations for avoiding disturbance at foraging areas and communal roost sites” (USFWS 2007). Overall, construction and operation of the Viaduct Alternative would not have significant adverse effects on bald eagles and NYSDOT has made a preliminary effect determination of “take not likely.”

LEAST BITTERN

The least bittern has been documented by NYNHP within 600 feet of the I-481 North Study Area. Least bitterns inhabit freshwater and brackish marshes with tall, dense vegetation including cattails, sedges, reeds, bulrushes, sawgrass, smartweed, arrowhead, buttonbush, and other emergent wetland vegetation. They can also be found at the edges of lakes and rivers with emergent and tall vegetation, but prefer marshes with scattered bushes or other woody growth. Wetland habitat within and around
the I-481 North Study Area is limited to drainage ditches, creeks, and common-reed dominated and disturbed forested wetlands along I-481 and within the quadrants of the I-81 and I-481 highway interchange, which are of poor quality and unlikely to support least bitterns. The wetlands where least bitterns were documented on the NYNHP would not be impacted by the proposed project. Additionally, because of the reclusive nature of the least bittern there is a very low probability that any individual bittern would leave the safety of their wetland area to forage in any of the unsuitable/disturbed wetlands within the project area during construction. Therefore, due to the lack of suitable habitat in the Study Areas and the fact that their known habitat would not be impacted by the Project, NYSDOT has made a preliminary effect determination of “take not likely” for the least bittern for the Viaduct Alternative.

NORTHERN HARRIER

NYNHP has a record of northern harriers breeding within 1.5 miles of the I-481 Study Area. Northern harriers inhabit areas such as grasslands, old fields, pastures, croplands, and salt marshes during both the breeding and non-breeding periods (Smith et al. 2011). The closest such habitat to the I-481 North Study Area that is potentially suitable for northern harriers includes the Cicero Swamp Wildlife Management Area and some agricultural fields that are approximately 1.5 and 1.2 miles to the east, respectively, and the marshes of a large wetland complex that is approximately 1.2 miles to the west, along State Route 481. Non-breeding northern harriers, which are much less sensitive to human disturbance than when breeding, might also be expected to occur in the open fields of the Syracuse Hancock International Airport. There is no suitable breeding or non-breeding habitat for northern harriers within the I-481 North Study Area, which is primarily limited to roadside grass, small and degraded common reed-dominated wetlands bordering drainage ditches and within clover leaves of the I-481 and I-81 interchange, and small fragments of woodland. None of these habitat types would support breeding or non-breeding northern harriers, and therefore, northern harriers are not considered to have the potential to occur within the I-481 North Study Area. There are no NYNHP records of northern harriers and there is no suitable habitat for northern harriers in any of the other Study Areas. For these reasons, construction and operation of the Viaduct Alternative would not impact northern harriers or their habitat, and NYSDOT has made a preliminary effect determination of “take not likely.”

LAKE STURGEON

Lake sturgeon are present in Onondaga Lake, which is adjacent to the Central Study Area. Under the Viaduct Alternative, a 96-inch-diameter stormwater trunk line and a 42-inch-diameter stormwater trunk line would be installed in Onondaga Creek, a tributary to Onondaga Lake, in order to separate the stormwater from the sanitary sewer and reduce combined sewer overflows, leading to water quality improvements in Onondaga Creek and Onondaga Lake. Under the Viaduct Alternative, the amount of impervious area in the Central Study Area (136.8 acres) would decrease by 9.4 acres, or 6.4 percent, with corresponding reductions in stormwater runoff volumes and pollutant loadings. The new stormwater system would also include best management practices (BMPs) such as hydrodynamic stormwater treatment units and infiltration/detention basins, which would improve stormwater quality prior to it entering the stormwater trunk lines. Despite the overall decrease in impervious area in the Study Area, the total highway lane miles in the Study Area would increase by 18 percent, leading to corresponding increases in chloride loadings to Lower Onondaga Creek, when compared with the No Build Alternative. However, the concentration of chloride in Onondaga Creek, and thus the lake, would not substantially increase under this alternative. According to United States Geological Survey (USGS) monitoring data, the concentration of chloride in Onondaga Creek, in 2012, ranged from 259 to 833 mg/L, which was above the USEPA chronic toxicity level for streams (230 mg/L), but below the acute toxicity value (860 mg/L). Based on the ambient chloride concentrations in the Creek, a 0.4
to 1.3 percent increase in chloride loading would not be expected to raise the chloride level above the acute toxicity threshold. The increase in chloride loading would be even less noticeable in Onondaga Lake, as the much larger water body would dilute the chloride concentrations entering from Onondaga Creek. Additionally, the Project would have a reduction in the total amount of impervious area in the Study Area, which could lead to a reduction in chloride applications, and a benefit to water quality not indicated by the analyses. Therefore, the operation of the Viaduct Alternative would have an overall beneficial effect on Onondaga Creek when compared to the No Build Alternative.

Lake sturgeon are known to occur in the surface waters of Onondaga Lake, and have the potential to occur in Onondaga Creek, and Ley Creek. The implementation of erosion and sediment controls (e.g., silt fences and inlet protection) in accordance with the 2016 New York State Standards and Specifications for Erosion and Sediment Control (“Blue Book”), the SWPPP prepared to meet the requirements of SPDES General Permit GP-0-15-002, and NYSDOT Highway Design Manual, Chapter 8 Highway Drainage, would minimize the potential for construction activities to result in adverse effects to surface water quality within the study areas.

BMPs that incorporate green infrastructure components (e.g., source control stormwater management, such as permeable pavements, and bioretention areas, such as rain gardens) would be considered for integration into the public right-of-way. Where little space is available, underground detention basins and hydrodynamic devices would be considered. These BMPs would ensure there would be no net increase in stormwater flow to receiving surface waters (i.e., Onondaga Creek) within the Central Study Area and that all roadway runoff from the Viaduct Alternative would be treated for water quality prior to discharge to surface waters. With these measures in place, the State-listed lake sturgeon would not be directly or indirectly affected by the operation of the Viaduct Alternative. As such, NYSDOT has made a preliminary effect determination of “take not likely” for the lake sturgeon for the Viaduct Alternative.

SEASIDE BURLRUSH

The State-listed Threatened seaside bulrush has been recorded by NYNHP in the vicinity of the Central Study Area. The Central Study Area is heavily urbanized and dominated by buildings, transportation infrastructure, and other impervious surfaces, and it does not contain the seaside bulrush preferred habitat of open, saltwater or brackish wetlands. The study area also does not contain the confirmed ecological communities where this plant has been documented within the State. However, occasionally seaside bulrush may be found in disturbed areas such as roadsides and ditches. Due to the lack of preferred habitat and confirmed ecological communities, this species has a low potential to occur within the Central Study Area. Also, as described above, seaside bulrush was not found during targeted surveys for this species in the Central Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the seaside bulrush for the Viaduct Alternative.

MIDLAND SEDGE

The State-listed Threatened Midland sedge has been recorded by NYNHP in terrestrial cultural ecological communities in the vicinity of the Central and I-481 South Study Areas. However, as described above, Midland sedge was not found during targeted surveys for this species in the Central Study Area. Surveys for midland sedge would be conducted in Summer 2019 in the vicinity of Noise Barrier 9 in the I-481 South Study Area. Should midland sedge be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. With these measures in place, no significant adverse effects would occur to midland sedge as a result of the operation of the Viaduct Alternative. Therefore, NYSDOT has made
I-81 Viaduct Project
Assessment of State Listed Threatened or Endangered Species

A preliminary effect determination of “take not likely” for the midland sedge for the Viaduct Alternative.

SALT MARSH ASTER

Saltmarsh aster is a State-listed Threatened species that has been recorded by NYNHP in the vicinity of the Central Study Area. The Central Study Area is heavily urbanized and dominated by buildings, transportation infrastructure, and other impervious surfaces, and it does not contain the saltmarsh aster preferred habitat of salt or brackish marshes, the edges of tidal channels and creeks, and swales of coastal dunes. It also does not contain the confirmed ecological communities from which it has been documented. However, it is also occasionally found in disturbed habitats that are salt influenced. As previously described, saltmarsh aster was not found during targeted surveys for this species in the Central Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the saltmarsh aster for the Viaduct Alternative.

REFLEXED SEDGE

The State-listed Threatened reflexed sedge has been recorded by NYNHP in terrestrial cultural ecological communities in the vicinity of the Central and I-481 South Study Areas. However, as described above, reflexed sedge was not found during targeted surveys for this species in the Central Study Area. Surveys for reflexed sedge would be conducted in Summer 2019 in the vicinity of Noise Barrier 9 in the I-481 South Study Area. Should reflexed sedge be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. With these measures in place, no significant adverse effects would occur to reflexed sedge as a result of the operation of the Viaduct Alternative. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the reflexed sedge for the Viaduct Alternative.

STRAIGHT-LEAF PONDWEED

The State-listed endangered straight-leaved pondweed has been recorded by NYNHP in the vicinity of the Central Study Area. As described above, straight-leaved pondweed was not found during targeted surveys for this species in the Central Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the straight-leaved pondweed for the Viaduct Alternative.

GLOMERATE SEDGE

The State-listed endangered glomerate sedge has been recorded by NYNHP in the vicinity of the Central Study Area. Surveys for glomerate sedge would be conducted in Summer 2019. Should glomerate sedge be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the glomerate sedge for the Viaduct Alternative.

MARSH ARROW GRASS

The State-listed Threatened marsh arrow grass has been recorded by NYNHP in the vicinity of the I-481 South Study Area. Given its habitat requirements, the potential for marsh arrow grass to occur within the I-481 South Study Area would be limited to a narrow channel located in the vicinity of the proposed Noise Barrier 9. Surveys for marsh arrow grass would be conducted in Summer 2019. Should marsh arrow grass be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. Therefore,
NYSDOT has made a preliminary effect determination of “take not likely” for the marsh arrow grass for the Viaduct Alternative.

OHIO GOLDENROD

The State-listed Threatened Ohio goldenrod has been recorded by NYNHP in the vicinity of the I-481 East Study Area. However, Ohio goldenrod was not found during targeted surveys for this species in the I-481 East Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the Ohio goldenrod for the Viaduct Alternative.

TROUBLESOME SEDGE

The State-listed Threatened troublesome sedge has been recorded by NYNHP in the vicinity of the I-481 East and North Study Areas. However, troublesome sedge was not found during targeted surveys for this species in the I-481 North Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the troublesome sedge for the Viaduct Alternative.

D. COMMUNITY GRID ALTERNATIVE

INDIANA BAT

Construction of the Community Grid Alternative would include all of the actions described above for the Viaduct Alternative in the Central Study Area, as well as additional road construction in the I-481 North, I-481 South, and the I-481 East Study Areas. Attachment 1, Figure J-4-1-5 through Figure J-4-1-9 show the approximate location of the proposed work in the Central, I-481 South, I-481 East and I-481 North Study Areas. As discussed under Section B, Indiana bats are considered unlikely to occur in the I-481 North and Central Study Areas due to the high density of urban development and lack of quality habitat, whereas they are expected to have the potential to occur in woodlands near the I-481 East and I-481 South Study Areas.

Construction in the I-481 East Study area would require the clearing of approximately 0.27 acres of land with trees for permanent roadway. In the northern portion of the study area, tree clearing would occur immediately adjacent to and within 100 feet of the existing boundaries of I-481 and the Exit 5W on- and off-ramps. The trees that would be removed along the eastern and western sides of I-481 and the exit ramps are not part of a tract of contiguous forest and instead are part of narrow roadside fragments that are closely bound between I-481 and other roads or forms of development in each direction. The trees that would be removed on the east side of I-481 are part of an approximately 200-ft wide linear fragment that is bound by I-481 to the west and Pheasant Road to the east (see Attachment 3, Figure J-4-3-11), such that the larger tract of forest to the east of Pheasant Road that may support Indiana bats would not be directly affected. Indiana bats would not be expected to utilize this narrow band of trees along the highway margin over the larger tract of more suitable mature forest and utility corridor habitat immediately to the east of Pheasant Road. The tree removal that would occur in the southern portion of the I-481 East Study Area would also be limited to within 100 feet of the existing roadway, where habitat suitability for Indiana bats is considered low. Occurrences of Indiana bats in this area are less likely than in the floodplain forest further to the east and more removed from the disturbances associated with I-481. The characteristics and integrity of this floodplain forest around Butternut Creek would not be affected by the removal of trees adjacent to the highway, and this area of habitat would have the same potential to be used for foraging and/or roosting by Indiana bats under the Community Grid Alternative as at present.

Construction in the I-481 South Study Area would require the removal of a total of approximately 7.59 acres of land with trees (for the roadway) bordering the eastern and western sides of I-81. These trees make up the current roadside edge of narrow, linear forest fragments that parallel the highway.
on both sides. They are bounded by I-81 in one direction, and roads, housing subdivisions, and other forms of development in the other direction. Tree clearing in this area would be limited to within 100 feet of the existing I-81 roadway and as such, would not substantively alter habitat conditions in the portions of these fragments that would remain. These areas of woodland bordering the highway are already narrow and isolated, such that the removal of trees along their edges would not cause any additional fragmentation of forest or otherwise compromise forest integrity.

Overall, the clearing of 7.86 acres of trees in the Central Study Area, 7.59 total acres of woodland along I-81 in the I-481 South Study Area, 0.27 total acres of woodland along I-481 in the I-481 East Study Area, and 1.81 acres of woodland in the I-481 North Study Area would not be expected to represent a substantial loss of quality potential roosting or foraging habitat for Indiana bats. As discussed above, roost tree availability in general is unlikely to be a limiting factor in the regulation of Indiana bat population sizes, and colonies and social networks of Indiana bats have been shown to be robust to the loss of previously used roost trees. Indiana bats are known to naturally change roost trees on a regular basis on a scale of hundreds of feet to more than a mile (Kurta et al. 2002, Menzel et al. 2002, Owen et al. 2002, Johnson et al. 2009), and when primary roosts are lost, the bats relocate to new roosting areas (Silvis et al. 2014a,b). Small and narrow fragments of woodland along major roadways, like those that would be affected in the I-481 East and I-481 South Study Areas for the Community Grid Alternative, would remain common throughout the Syracuse metropolitan area and available for any Indiana bats potentially displaced from the affected areas. For these reasons, the Community Grid Alternative would not be expected to substantially affect roost tree availability for Indiana bats in the Syracuse area. As a precaution to avoid any potential for direct impacts, all tree clearing would be restricted to the winter hibernation period (November–March 31) when Indiana bats would be in the hibernaculum. This and all other aspects of tree clearing for the Community Grid Alternative would be consistent with the tree removal Avoidance and Minimization Measures in the USFWS/FHWA RWPC.

Per Table J-4-4, the NYNHP indicated known Indiana bat roost trees 0.2 - 2.5 miles from the I-481 South Study Area and less than 2.5 miles from the I-481 East Study Area. The closest Indiana bat hibernaculum is within 2.5 miles of the I-481 South Study Area and the I-481 East Study Area. There are no Indiana bat hibernaculum or roost trees within 2.5 miles from the Central or I-481 North Study Areas.

Trees would not be removed for noise walls in the I-481 South Study Area. Attachment 3, Figures J-4-3-7 through J-4-3-14 show the approximate area of tree removal for the Community Grid Alternative.

There are bridges in the Central, I-481 North, I-481 South, and the I-481 East Study Areas that would be modified, removed, or replaced as part of the Community Grid Alternative. These bridges would be inspected in accordance with the FHWA New York Division Bridge Bat Survey Form during the roosting season (April 1 to September 30) to determine if there is any evidence of bats actively using them. In the event that any bats are observed utilizing a bridge, all bridge Avoidance and Minimization Measures in the USFWS/FHWA RWPC would be adopted to the greatest extent possible. FHWA would be consulted in the event that any of the measures could not be implemented to determine the proper course of action.

Similar to roosting habitat, the areas in which tree clearing would occur in the I-481 South, I-481 East, and I-481 North Study Areas for the Community Grid Alternative are unlikely to represent quality foraging habitat for Indiana bats because they are located immediately adjacent to major roadways. As discussed above for the Viaduct Alternative, foraging Indiana bats have been found to avoid roads, often reversing course when a road is encountered. This appears to be due more so to the presence of motor vehicles than the physical presence of the road itself (Zurcher et al. 2010, Bennett
and Zurcher 2013). The areas where tree clearing would occur for the Community Grid Alternative are subjected to high levels of motor vehicle traffic noise and visual disturbance, which is expected to limit the likelihood that they are used for foraging by Indiana bats. Loss of these trees would not be expected to substantially affect foraging habitat availability for the region’s population of Indiana bats. Comparable roadside edge habitat would remain abundant along I-481 and other major roadways in the region.

As with the Viaduct Alternative, noises and vibrations generated during construction of the Community Grid Alternative would not be expected to affect any Indiana bats potentially occurring in any of the Study Areas, given that noise levels are already extremely high under existing conditions. Current occurrence of Indiana bats under these conditions would inherently indicate a high tolerance of, and habituation to, the anthropogenic disturbances that are associated with the roadside environment along I-81 and I-481. Indiana bats in general have been known to roost near construction sites, major airports, and other extremely noisy locations (Sparks et al. 1998, Keeley and Tuttle 1999, Niver 2009), suggesting that while they are roosting, they are tolerant of loud noises and vibrations caused by human activity. Foraging behavior of Indiana bats has also been found to be unaffected by extremely loud noises and reverberations, such as artillery fire on military bases (Shapiro and Hohmann 2005). Sounds generated by heavy construction equipment and similar sources typically fall well below the hearing and echolocation frequency ranges of bats, which may largely explain this tolerance of loud noises (Delaney and Grubb 2004, Niver 2009). In contrast, higher frequency noises like those of cars and light trucks, can displace foraging Indiana bats and other Myotis species from an area (Schaub et al. 2008, Zurcher et al. 2010, Bennett and Zurcher 2013). Given that the I-481 South and I-481 East Study Areas are already chronically subjected to high frequency noises from motor vehicles, and the heavy construction equipment noise that would be generated by the Project would be unlikely to be heard by roosting or foraging of Indiana bats, construction of the Community Grid Alternative would not be expected to impact any Indiana bats potentially occurring in these areas. Similarly, operation of the Community Grid Alternative would be comparable to current traffic conditions and therefore would not elevate disturbance levels to an extent that would potentially affect Indiana bats. Sound barriers that would be constructed along portions of I-81 and I-481 would further avoid the potential for increased noise or visual disturbance in neighboring areas during operation of the Community Grid Alternative.

Temporary lighting used during construction and permanent lighting used during operation would follow the relevant Avoidance and Minimization Measures in the USFWS/FHWA RWPC. These include directing temporary construction lighting away from suitable habitat during the active season, using downward-facing, full cut-off lens lights during project operation, and directing lighting away from suitable habitat when installing new or replacing existing permanent lights.

Given that the Project under the Community Grid Alternative would limit tree clearing to the winter hibernation period (November 1 – March 31), within 100 feet of existing roadways, is more than 0.5 miles from a hibernaculum but less than 2.5 miles from a known roost tree, and will follow the applicable Avoidance and Minimization Measures of the USFWS/FHWA RWPC; NYS DOT has made a preliminary effect determination of “Take Not Likely” for the Indiana bat for the Community Grid Alternative.
NORTHERN LONG-EARED BAT

Construction of the Community Grid Alternative would include all of the actions described above for the Viaduct Alternative in the Central Study Area, as well as additional construction in the I-481 North, I-481 South, and the I-481 East Study Areas. Attachment 1, Figure J-4-1-5 through Figure J-4-9 show the approximate location of the proposed work in the Central, I-481 South, I-481 East and I-481 North Study Areas. Because northern long-eared bats are sensitive to urbanization and fragmentation, and prefer large tracts of interior forest for roosting and foraging (Foster and Kurta 1999, Broders et al. 2006, Henderson et al. 2008, Segers and Broders 2014), there is little habitat in the Project Area that is considered potentially suitable for northern long-eared bats. One area where northern long-eared bats could potentially occur is in the woodland fragments bordering the east and west sides of the I-481 South Study Area, but these fragments may be too small and have too high of an edge to area ratio to be suitable. The closest summer habitat to the I-481 East Study Area that is most suitable for northern long-eared bats is the woodland east of I-481 and south of I-90 (New York State Thruway). This approximately one mile wide and 0.7 mile long woodland is bisected by two utility ROWs, but may be large enough to support northern long-eared bats. Suitable roost trees are likely abundant in this area. The wooded area around Butternut Creek to the east of the southern end of the I-481 East Study Area may also represent suitable habitat for the northern long-eared bat. Because of their well-documented avoidance of urban areas and sharp edges (Owen et al. 2003, Patriquin and Barclay 2003, Carter and Feldhammer 2005, Morris et al. 2010, Segers and Broders 2014), northern long-eared bats are not likely to occur within the Central or I-481 North Study Areas.

Construction in the I-481 East Study Area would require the clearing of approximately 0.27 acres of land with trees (floodplain forest). In the northern portion of the study area, the tree clearing (approximately 0.22 acres) would occur immediately adjacent to and within 100 feet of the existing boundaries of I-481 and the Exit 5W on- and off-ramps. These trees that would be removed along the eastern and western sides of I-481 and the exit ramps are not part of a tract of contiguous forest and instead are part of narrow roadside fragments that are closely bounded between I-481 and other roads or forms of development in each direction. These trees along the roadside edge are not expected to represent potential roosting habitat for northern long-eared bats, given their well-documented avoidance of sharp edges in favor of interior forest. As such, their removal would not be likely to reduce roosting habitat availability in the area for northern long-eared bats. The trees that would be removed on the east side of I-481 are part of an approximately 200-ft wide linear fragment that is bound by I-481 to the west and Pheasant Road to the east (see Attachment 3, Figure J-4-3-11), such that the larger tract of forest to the east of Pheasant Road that may support northern long-eared bats would not be directly affected. Northern long-eared bats would not be expected to utilize this narrow band of trees along the highway margin over the larger tract of more suitable mature forest habitat immediately to the east of Pheasant Road. The tree removal that would occur in the southern portion of the I-481 East Study Area would also be limited to within 100 feet of the existing roadway, immediately adjacent to major transportation infrastructure, where roosting habitat suitability for northern long-eared bats is considered extremely low. Any northern long-eared bats potentially present in the vicinity of this area would be most likely to occur in the floodplain forest that is further away margin over the larger tract of more suitable mature forest habitat.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Roost Trees</th>
<th>Hibernaculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Study Area</td>
<td>>2.5 miles</td>
<td>>2.5 miles</td>
</tr>
<tr>
<td>I-481 South Study</td>
<td><2.5 miles</td>
<td><2.5 miles</td>
</tr>
<tr>
<td>I-481 East Study Area</td>
<td><2.5 miles</td>
<td>>2.5 miles</td>
</tr>
<tr>
<td>I-481 North Study Area</td>
<td>>2.5 miles</td>
<td>>2.5 miles</td>
</tr>
</tbody>
</table>
to the east and more removed from the disturbances associated with I-481. The characteristics and integrity of this floodplain forest around Butternut Creek would not be affected by the removal of trees adjacent to the highway, and this area of habitat would have the same potential to be used for foraging and/or roosting by northern long-eared bats under the Community Grid Alternative as at present.

Construction in the I-481 South Study Area would require the clearing of a total of approximately 7.59 acres of land with trees (for the roadway) that borders the eastern and western sides of I-81. These trees make up the current roadside edge of narrow, linear forest fragments that parallel the highway on both sides. They are closely bound by I-81 in one direction and roads, housing subdivisions, and other forms of development in the other direction, and therefore lack any interior, forest core habitat that is preferred by northern long-eared bats. Tree clearing in this area would be limited to within 100 feet of the existing I-81 roadway, where northern long-eared bats are unlikely to roost. Clearing along the edges of these forest fragments would further reduce their width, but because they are already too narrow to contain any interior, core forest habitat, habitat suitability for northern long-eared bats and the likelihood of their occurrence in these areas would not be expected to change.

Overall, the clearing of 7.86 acres of trees in the Central Study Area, 7.59 total acres of woodland along I-81 in the I-481 South Study Area, 0.27 total acres of woodland along I-481 in the I-481 East Study Area, and 1.81 acres of woodland in the I-481 North Study Area would not be expected to represent a substantial loss of quality potential roosting or foraging habitat for northern long-eared bats. As discussed above, roost tree availability in general is not believed to currently be a limiting factor in the regulation of northern long-eared bat population sizes, and northern long-eared bats are known to be robust to the loss of previously used roost trees. Northern long-eared bats naturally change roost trees throughout the summer on a scale of hundreds of feet to more than a mile (Menzel et al. 2002, Owen et al. 2002, Johnson et al. 2009), and when primary roosts are lost, the bats relocate to new roosting areas (Silvis et al. 2014b). Small and narrow fragments of woodland along major roadways, like those that would be affected in the I-481 East and South Study Areas for the Community Grid Alternative, would remain common throughout the Syracuse metropolitan area and available for any northern long-eared bats potentially displaced from the affected areas. For these reasons, the Community Grid Alternative would not likely adversely affect habitat availability for northern long-eared bats in the Syracuse area. As a precaution to avoid any potential for direct impacts, all tree clearing would be restricted to the winter hibernation period (November 1–March 31) when northern long-eared bats would be in the hibernaculum. This and all other aspects of tree clearing for the Viaduct Alternative would be consistent with the tree removal Avoidance and Minimization Measures in the USFWS/FHWA USFWS/FHWA RWPC.

Per Table J-4-5 below, the NYNHP has no records of northern long-eared bat roost trees within 1.5 miles from the Central, I-481 South, I-481 East, or I-481 North Study Areas. The NYNHP has records of a northern long-eared bat hibernaculum greater than five miles from the Central and I-481 North Study Areas and less than five miles from the I-481 South and I-481 East Study Areas. Attachment 3, Figure J-4-3-7 through Figure J-4-3-14 show the approximate area of tree removal for the Community Grid Alternative.

There are bridges in the Central, I-481 North, I-481 South, and I-481 East Study Areas that would be modified, removed, or replaced as part of the Community Grid Alternative. These bridges would be inspected in accordance with the FHWA New York Division Bridge Bat Survey Form during the roosting season (April 1 to September 30) to determine if there is any evidence of bats actively using them. In the event that bats are observed, applicable bridge Avoidance and Minimization Measures in the USFWS/FHWA RWPC would be adopted to the greatest extent possible. FHWA would be
consulted in the event that any of the measures could not be implemented to determine the proper course of action.

Similar to roosting habitat, the areas where tree clearing would occur in the I-481 South and East Study Areas for the Community Grid Alternative are unlikely to represent quality foraging habitat for Indiana bats because they are located immediately adjacent to major roadways. As discussed above for the Viaduct Alternative, foraging Indiana bats have been found to avoid roads, often reversing course when a road is encountered. This appears to be due more so to the presence of motor vehicles than the physical presence of the road itself (Zurcher et al. 2010, Bennett and Zurcher 2013). The areas where tree clearing would occur for the Community Grid Alternative are subjected to high levels of motor vehicle traffic noise and visual disturbance, which is expected to limit the likelihood that they are used for foraging by Indiana bats. Loss of these trees would not be expected to substantially affect foraging habitat availability for the region’s population of Indiana bats. Comparable roadside edge habitat would remain abundant along I-481 and other major roadways in the region.

As with the Viaduct Alternative discussed above, construction noises generated during construction of the Community Grid Alternative would not be expected to affect any northern long-eared bats potentially occurring in the Study Areas, given that noise levels are already extremely high under existing conditions. Presence of northern long-eared bats under these conditions would inherently indicate a high tolerance of, and habituation to, the anthropogenic disturbances that are associated with the roadside environment along I-81 and I-481. To our knowledge, there have not been any studies of the sensitivity of northern long-eared bats to construction noises or other forms of noise disturbance. However, northern long-eared bats have been observed roosting in areas with substantial noise and vibration levels, such as near the Indianapolis International Airport (Sparks et al. 1998) and under bridges (Feldhamer et al. 2003), which suggests that they can be tolerant of chronic anthropogenic noise disturbance and vibration while roosting if the habitat is otherwise suitable. Like Indiana bats, loud noises like those generated by heavy construction equipment are well below the expected hearing and echolocation frequency ranges of northern long-eared bats (Delaney and Grubb 2004, Niver 2009). Higher frequency noises, however, like those of cars and light trucks, can displace foraging Myotis bats (Schaub et al. 2008, Zurcher et al. 2010, Bennett and Zurcher 2013), like northern long-eared bats, from an area. Given that the I-481 South and East Study Areas are already chronically subjected to high frequency noises from motor vehicles, and the heavy construction equipment noise that would be generated by the Project would be unlikely to affect roosting or foraging of northern long-eared bats, construction of the Community Grid Alternative would not be expected to impact any northern long-bats potentially occurring in these areas. Similarly, operation of the Community Grid Alternative would be comparable to current traffic conditions and therefore would not elevate disturbance levels to an extent that would potentially affect northern long-eared bats. Sound barriers that would be constructed along portions of I-81 and I-481 would further avoid the potential for increased noise or visual disturbance in neighboring areas during operation of the Community Grid Alternative.

Temporary lighting used during construction and permanent lighting used during operation would follow the relevant Avoidance and Minimization Measures in the USFWS/FHWA RWPC. These include directing temporary construction lighting away from suitable habitat during the active season, using downward-facing, full cut-off lens lights during project operation, and directing lighting away from suitable habitat when installing new or replacing existing permanent lights.

Given that the Project under the Community Grid Alternative would limit tree clearing to the winter hibernation period (November–March 31), is more than 0.5 miles from a hibernaculum and more than 150 feet from a known roost tree, is within 100 feet of existing roadways, and will follow the
applicable Avoidance and Minimization Measures of the USFWS/FHWA RWPC; NYSDOT has made a preliminary effect determination of “Take Not Likely” for the northern long-eared bat for the Community Grid Alternative.

Table J-4-5

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Roost Trees</th>
<th>Hibernaculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Study Area</td>
<td>>1.5 miles</td>
<td>>5.0 miles</td>
</tr>
<tr>
<td>I-481 South Study</td>
<td>>1.5 miles</td>
<td><5.0 miles</td>
</tr>
<tr>
<td>I-481 East Study Area</td>
<td>>1.5 miles</td>
<td><5.0 miles</td>
</tr>
<tr>
<td>I-481 North Study Area</td>
<td>>1.5 miles</td>
<td>>5.0 miles</td>
</tr>
</tbody>
</table>

EASTERN MASSASAUGA

Construction of the Community Grid Alternative would include all of the actions described above for the Viaduct Alternative in the Central Study Area, as well as additional construction in the I-481 North, I-481 South, and the I-481 East Study Areas. **Attachment 1, Figure J-4-1-5 through Figure J-4-1-9** show the approximate location of the proposed work in the Central, I-481 South, I-481 East and I-481 North Study Areas. As discussed under **Section B**, eastern massasagas are considered unlikely to occur in any of the four Study Areas due to the high density of urban development and lack of the species’ preferred habitat of fens, marshes, and wet prairies. As discussed above the NYNHP has only one record of this species occurring within the Project Area and that is adjacent to the I-481 North Study Area.

The Community Grid Alternative would affect a total of approximately 3.20 acres of ditches, 29.78 acres of floodplain forests, 63.78 acres of successional southern hardwood forests, 412.18 acres of impervious surfaces, 220.75 acres of mowed lawns/mowed lawns with trees, 58.08 acres of successional old fields, 34.88 acres of successional shrublands, 0.62 acres of freshwater wetlands, and 0.07 acres of surface waters. Although Mud Creek, on the eastern edge of the I-481 North Study Area, has a hydrological connection to a known location of the eastern massasagas via unnamed NYSDEC Class C streams, the habitat types within the I-481 North Study Area are not suitable for the eastern massasauga. As discussed under **Section B**, roads, residential neighborhoods, and other human-altered landscapes are barriers to eastern massasauga movements (Moore and Gilingham 2006), and movement of eastern massasagas out of their current location to the east along these unnamed NYSDEC Class C streams that eventually connect to Mud Creek within the I-481 North Study Area is considered extremely unlikely. These streams extend through heavily developed areas and are culverted under major roads in several locations, and therefore would not be expected to be used by eastern massasagas to disperse outside of their current location. Additionally, as noted above, telemetry studies of eastern massasagas in their current location have not observed any movements of individuals outside of their current location via these streams or otherwise (Johnson and Breisch 1993; Johnson 1995, 2000). For each of these reasons, eastern massasagas would not be expected to occur within the I-481 North Study Area. The acreage of roadside lawn, successional old field, shrubland, woodland, wetland, ditch, surface water, and impervious surface that would be impacted within the limits of disturbance in the I-481 North Study Area would not eliminate any habitat that would be capable of supporting the species. Nevertheless, as a protective measure to avoid any potential for direct impacts to any eastern massasagas, rattlesnake fencing would be erected around the limits of disturbance prior to construction to prevent eastern massasagas from being able to enter the construction area.
For these reasons, eastern massasaugas are not expected to occur in any portion of the Project Area. Therefore, NYSDOT has made a preliminary effect determination of “Take Not Likely” for the eastern massasaugas for the Community Grid Alternative.

AMERICAN HART'S-TONGUE FERN

As described above, the NYNHP database indicates that the American hart's-tongue fern has been documented adjacent to the I-481 South Study Area and the USFWS IPaC database indicated the species had the potential to occur within the I-481 South Study Area. The NYNHP has no known occurrences of the American hart's-tongue fern within or adjacent to the I-481 North, I-481 East, or Central Study Areas and there is no suitable habitat for this species within or adjacent to these Study Areas. Additionally, the American hart's-tongue fern did not come up on the USFWS’s IPaC database search for these three Study Areas. **Attachment 1, Figure J-4-1-8 and Figure J-4-1-9** show the approximate location of the proposed work in the I-481 South Study Area.

Because the NYNHP database shows American hart's-tongue fern as occurring adjacent to the I-481 South Study Area and limited forested/roadcut cliff/slope cut communities (i.e., rocky habitats) are present within the limits of disturbance, a targeted search for the American hart's-tongue fern was conducted in the vicinity of the roadcut cliff/slope communities located in the limits of disturbance of the I-481 South Study Area. A team of two plant ecologists conducted a survey for the American hart's-tongue fern on April 18, 19, and 20, 2017 within forested (i.e., southern successional hardwoods) habitats containing roadcut cliff/slope habitat of the I-481 South Study Area. The field biologists walked meandering transect lines, generally oriented south to north, spaced approximately 20 feet wide, as the areas and the terrain would allow. The team walked at a slow walking pace, stopping approximately every 50 feet for closer examination of species and habitat suitability. Potential habitat areas were traversed at a slower pace and up to five minutes were taken at stopping points, for closer examination of plants and habitat. No American hart's-tongue fern individuals were found within the I-481 South Study Area during the targeted searches for this species.

In addition, as described above, on July 13, 2017, a site investigation was conducted in the vicinity of proposed Noise Barrier 8 in the I-481 South Study Area to determine if habitat for American hart's-tongue fern is present. Habitat in the vicinity of the expanded portion of the I-481 South Study Area consists of a disturbed ROW. It was determined that, no suitable habitat for American hart's-tongue fern is present in the vicinity of proposed Noise Barrier 9.

As discussed above, American hart's-tongue fern’s preferred habitat is not present within the I-481 East, the Central or the I-481 North Study Areas and no species were found during a field survey in the I-481 South Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the American hart's-tongue fern for the Community Grid Alternative.

PEREGRINE FALCON

The peregrine falcon currently nests in an artificial nest box on a building adjacent to the Central Study Area, and thus, it has the potential to occur throughout the Central Study Area. The peregrine falcons in this area are already accustomed to an urban environment and would not be further impacted by additional noise or activity from the operation of the Project. Peregrine falcons will tolerate almost any level of human activity taking place below their nest provided that the nest itself is inaccessible (Ratcliffe 1972) to humans or predators. As such, the peregrine falcon would not be significantly adversely affected by the operation of the Community Grid Alternative.

The nest box is located outside of the area that may be disturbed by construction. Should construction or construction staging take place near the nest box, then measures would be implemented by the Contractor to avoid disruptions to the peregrine falcon nest box, including the establishment of any
required buffers or monitoring based on coordination with NYSDEC. As such, NYSDOT has made a preliminary effect determination of “take not likely” for the peregrine falcon for the Community Grid Alternative.

Bald Eagle

As discussed above, NYNHP has a record of non-breeding bald eagles perching and foraging along the shoreline of Onondaga Lake. This area is on the periphery of the Central Study Area and therefore non-breeding bald eagles have the potential to occur there. The sensitivity of bald eagles to human disturbance is greatest during courtship and nest-building, which take place in New York between December and March, and then declines as the nesting period progresses and eventually ends (USFWS 2007). Decades ago, bald eagles were considered to be sensitive to human disturbance even outside of the breeding season (e.g., Stalmaster and Newman 1978, Nye 1994, Stalmaster and Kaiser 1997), with concern that repeated displacement from important roosting and foraging areas could waste energy reserves at a time of year when energy demands are high (Stalmaster and Gessaman 1984). Since then, however, bald eagles have shown a rapid and substantial generational habituation to human disturbance during both the breeding and non-breeding periods, and an increasing tolerance of development, including urbanization (Johnson 2010, Guinn 2013). In many parts of their range, bald eagles are increasingly nesting and occurring during the non-breeding periods in areas with heavy levels of human activity where they would almost never be found only a few decades ago (Millsap et al. 2004, Guinn 2013). This includes nesting by bald eagles in recent years within major metropolitan areas, including New York City, Washington D.C., Philadelphia, and Pittsburgh (Sullivan 2016). The use of Onondaga Lake in the City of Syracuse by bald eagles is another such example of bald eagles having acclimated to an urban area with extremely high levels of disturbance. Any non-breeding bald eagles utilizing the lake and its shorelines inherently display a high tolerance of human activity as well as degraded habitat.

Construction and operation of the Community Grid Alternative in the Central Study Area would be the same as described above for the Viaduct Alternative. The Community Grid Alternative would include the construction and operation of a reconstructed system of ramps connecting I-81 to Park Street, State Route 370, and Old Liverpool Road. The closest construction activity to Onondaga Lake would consist of road repaving approximately 200 feet away from the southeastern shoreline. At slightly greater distances, the road reconstruction would likely include louder activities such as jackhammering and pile-driving. The USFWS Bald Eagle Management Guidelines (USFWS 2007) do not provide guidance on buffer distances for construction disturbance near habitats used by non-breeding eagles but recommend a minimum buffer of 330 feet from nests. Given the lower sensitivity of bald eagles to disturbance during the non-breeding period compared to the nesting period (USFWS 2007) and the high existing levels of disturbance and urban setting of the area of Onondaga Lake where non-breeding bald eagles have been observed, a minimum distance of 200 feet from the closest area of construction to the closest point of lakeshore where non-breeding eagles could occur is expected to be more than sufficient for reducing the likelihood of any potential disturbance from construction noise. In the event that any bald eagles would be displaced by construction noise from the small area of the lake and shoreline near the site of construction, the effect would be highly temporary, and the eagles would be able to easily distance themselves from the activity and utilize nearby areas of the lake and its shoreline without negative consequence. Operation of the Community Grid Alternative would not bring motor vehicle traffic any closer to the Onondaga Lake shoreline than at present or increase existing levels of disturbance. Given that paved roads with heavy traffic are already present near the shoreline in this area, operation of the Community Grid Alternative would not eliminate quality habitat or otherwise permanently alter the current conditions on Onondaga Lake for non-breeding bald eagles. The Community Grid Alternative would not create disruptive activities or development in the direct flight paths of eagles between roost sites and important foraging areas, and
in all other aspects would be in accordance with the USFWS Bald Eagle Management Guidelines’ “recommendations for avoiding disturbance at foraging areas and communal roost sites” (USFWS 2007). Overall, construction and operation of the Community Grid Alternative would not have significant adverse effects on bald eagles and NYSDOT has made a preliminary effect determination of “take not likely.”

LEAST BITTERN

The least bittern has been documented by NYNHP within 600 feet of the I-481 North Study Area. Least bitterns inhabit freshwater and brackish marshes with tall, dense vegetation including cattails, sedges, reeds, bulrushes, sawgrass, smartweed, arrowhead, buttonbush, and other emergent wetland vegetation. They can also be found at the edges of lakes and rivers with emergent and tall vegetation, but prefer marshes with scattered bushes or other woody growth. Wetland habitat within and around the I-481 North Study Area is limited to drainage ditches, creeks, and common-reed dominated and disturbed forested wetlands along I-481 and within the quadrants of the I 81 and I-481 highway interchange, which are inadequate for least bitterns. The wetlands where least bitterns were documented on the NYNHP would not be impacted by the Project. Additionally, because of the reclusive nature of the least bittern there is a very low probability that any individual bittern would leave the safety of their wetland area to forage in any of the unsuitable/disturbed wetlands within the project area during construction. Therefore, due to the lack of suitable habitat and the fact that their known habitat will not be impacted by the project, NYSDOT has made a preliminary effect determination of “take not likely” for the least bittern for the Community Grid Alternative.

NORTHERN HARRIER

NYNHP has a record of northern harriers breeding within 1.5 miles of the I-481 Study Area. Northern harriers inhabit areas such as grasslands, old fields, pastures, croplands, and salt marshes during both the breeding and non-breeding periods (Smith et al. 2011). The closest such habitat to the I-481 North Study Area that is potentially suitable for northern harriers includes the Cicero Swamp Wildlife Management Area and some agricultural fields that are approximately 1.5 and 1.2 miles to the east, respectively, and the marshes of a large wetland complex that is approximately 1.2 miles to the west, along State Route 481. Non-breeding northern harriers, which are much less sensitive to human disturbance than when breeding, might also be expected to occur in the open fields of the Syracuse Hancock International Airport. There is no suitable breeding or non-breeding habitat for northern harriers within the I-481 North Study Area, which is primarily limited to roadside grass, small and degraded common reed-dominated wetlands bordering drainage ditches and within clover leaves of the I-481 and I-81 interchange, and small fragments of woodland. None of these habitat types would support breeding or non-breeding northern harriers, and therefore, northern harriers are not considered to have the potential to occur within the I-481 North Study Area. There are no NYNHP records of northern harriers and there is no suitable habitat for northern harriers in any of the other Study Areas. For these reasons, construction and operation of the Community Grid Alternative would not impact northern harriers or their habitat, and NYSDOT has made a preliminary effect determination of “take not likely.”

LAKE STURGEON

Lake sturgeon are present in Onondaga Lake located in the vicinity of the Central Study Area. Within the Central Study Area, there are four active and two additional outfalls along Onondaga Creek, and one active outfall along Ley Creek. These outfalls are expected to remain active under the Community Grid Alternative and would continue to contribute their current loads of stormwater and pollutants to Onondaga and Ley Creeks. In addition, under the Community Grid Alternative, a 96-inch-diameter storm sewer trunk line would be installed in Onondaga Creek, a tributary to Onondaga
Lake. However, the Project would be designed with entirely separate runoff conveyance and treatment systems and would not contribute to the combined sewer flows. The reduction in impervious road surface within the Central Study Area under the Community Grid Alternative would result in approximately 11 percent decrease in pollutant loading when compared with the No Build Alternative. The reduction in road surface under this alternative would result in lower stormwater runoff volumes, and thus lower mass loading of pollutants. Chloride loading to Lower Onondaga Creek on an annual basis would be approximately 9.8 percent higher because the Community Grid Alternative would introduce 3.7 more highway miles that would require deicing. As discussed under the Viaduct Alternative, the chloride concentration in Lower Onondaga Creek in 2012, as measured by the USGS, ranged from 259 to 833 mg/L. Thus, according to the Toler Analysis, the Central Study Area under the Community Grid Alternative would contribute a 0.4 to 1.3 percent increase in the total concentration of chloride in Lower Onondaga Creek. The USEPA chronic toxicity water quality criteria concentration of chloride, for the majority of freshwater aquatic species, is 230 mg/L, while the acute toxicity concentration is 860 mg/L. Both high and low concentrations of chloride have effects on diversity and community structure of aquatic invertebrates and may influence reproduction of aquatic organisms. Although commonly found in freshwater systems, lake sturgeon are able to effectively osmoregulate at salinities up to 15 ppt (LeBreton and Beamish 1998), which is equivalent to a chloride concentration of 8,350 mg/L. At lower chloride concentrations, including those that currently occur in Lake Onondaga and Lower Onondaga Creek and those that would occur under the Community Grid Alternative, lake sturgeon would not be expected to show any obvious behavioral response (e.g., habitat avoidance, loss of appetite, etc.) to increased chloride concentrations. This would be especially true in Lake Onondaga, where lake sturgeon occur, because chloride concentrations entering the lake from Onondaga Creek would be diluted. Therefore, lake sturgeon are not likely to be affected by increased chloride concentrations resulting from the Community Grid Alternative.

Since stormwater BMPs do not remove chloride from stormwater, the Community Grid Alternative would result in higher chloride concentration within Lower Onondaga Creek when compared with the No Build Alternative, in which chloride is already elevated above the chronic toxicity water quality criteria. Under both alternatives, chloride concentration in Lower Onondaga Creek would be below the acute toxicity concentration (860 mg/L), which, in turn is below the rate that Lake Sturgeon can effectively osmoregulate salinities (8,350 mg/L).

Although the total lane miles would increase under the Community Grid Alternative, the total impervious area in the Central Study Area would be reduced; restoration of open areas within the NYSDOT ROW would be designed so that no more than 35 percent of these areas would be constructed as impervious surfaces. The reduction in impervious area outside of the highway lanes but within the NYSDOT ROW could lead to a reduction in chloride applications, and a benefit to water quality not indicated by the Toler Analysis. Additionally, while stormwater would no longer be treated at METRO and only a portion of the stormwater runoff volume would be treated by stormwater management BMP’s, the overall benefit of the separate storm drainage system would further improve water quality in a way not indicated by the FHWA analysis, by reducing CSO events.

Lake sturgeon is known to occur in the surface waters of Onondaga Creek, and have the potential to occur in Ley Creek, and Onondaga Lake. The implementation of erosion and sediment controls (e.g., silt fences, and inlet protection) in accordance with the 2016 New York State Standards and Specifications for Erosion and Sediment Control (“Blue Book”), the SWPPP prepared to meet the requirements of SPDES General Permit GP-0-15-002, and NYSDOT Highway Design Manual, Chapter 8 Highway Drainage, would minimize the potential for construction activities to result in adverse impacts to surface water quality within the Project Area.
BMPs that incorporate green infrastructure components (e.g., source control stormwater management, such as permeable pavements and bioretention areas, such as rain gardens) would be considered for integration into the public right-of-way. Where little space is available, underground detention basins and hydrodynamic devices would be considered. These BMPs would ensure there would be no net increase in stormwater flow to receiving surface waters (i.e., Onondaga Creek) within the Central Study Area and that all roadway runoff from the Community Grid would be treated for water quality prior to discharge to surface waters. With these measures in place, the State-listed lake sturgeon would not be directly or indirectly affected by the operation of the Community Grid Alternative. As such, NYSDOT has made a preliminary effect determination of “take not likely” for the lake sturgeon for the Community Grid Alternative.

SEASIDE BULRUSH

The State-listed Threatened seaside bulrush has been recorded by NYNHP in the vicinity of the Central Study Area. The Central Study Area is heavily urbanized and dominated by buildings, transportation infrastructure, and other impervious surfaces, and it does not contain the seaside bulrush preferred habitat of open, saltwater, or brackish wetlands. The study area also does not contain the confirmed ecological communities where this plant has been documented within the State. However, occasionally seaside bulrush may be found in disturbed areas such as roadways and ditches. Due to the lack of preferred habitat and confirmed ecological communities, this species has a low potential to occur within the Central Study Area. Also, as described above, seaside bulrush was not found during targeted surveys for this species in the Central Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the seaside bulrush for the Community Grid Alternative.

MIDLAND SEDGE

The State-listed Threatened Midland sedge has been recorded by NYNHP in terrestrial cultural ecological communities near the Central and I-481 South Study Areas. However, as described above, Midland sedge was not found during targeted surveys for this species in the Central Study Area. Surveys for midland sedge would be conducted in Summer 2019 in the I-481 South Study Area. Should midland sedge be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the midland sedge for the Community Grid Alternative. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the midland sedge for the Community Grid Alternative.

SALTMARSH ASTER

Saltmarsh aster is a State-listed Threatened species that has been recorded by NYNHP in the vicinity of the Central Study Area. The Central Study Area is heavily urbanized and dominated by buildings, transportation infrastructure, and other impervious surfaces, and it does not contain the saltmarsh aster preferred habitat of salt or brackish marshes, the edges of tidal channels and creeks, and swales of coastal dunes. It also does not contain the confirmed ecological communities from which it has been documented. However, it is also occasionally found in disturbed habitats that are salt influenced. As previously described, saltmarsh aster was not found during targeted surveys for this species in the Central Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the saltmarsh aster for the Community Grid Alternative.

REFLEDSED SEDGE

The State-listed Threatened reflexed sedge has been recorded by NYNHP in terrestrial cultural ecological communities in the vicinity of the Central and I-481 South Study Areas. However, as
described above, reflexed sedge was not found during targeted surveys for this species in the Central Study Area. Surveys for reflexed sedge would be conducted in Summer 2019. Should reflexed sedge be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the reflexed sedge for the Community Grid Alternative.

STRAIGHT-LEAF PONDWEED

The State-listed endangered straight-leaved pondweed has been recorded by NYNHP in the vicinity of the Central Study Area. As described above, straight-leaved pondweed was not found during targeted surveys for this species in the Central Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the straight-leaved pondweed for the Community Grid Alternative.

GLOMERATE SEDGE

The State-listed endangered glomerate sedge has been recorded by NYNHP in the vicinity of the Central Study Area. Surveys for glomerate sedge would be conducted in Summer 2019. Should glomerate sedge be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the glomerate sedge for the Community Grid Alternative.

MARSH ARROW GRASS

The State-listed Threatened marsh arrow grass has been recorded by NYNHP in the vicinity of the I-481 South Study Area. Given its habitat requirements, the potential for marsh arrow grass to occur within the I-481 South Study Area would be limited to a narrow channel located in the vicinity of the proposed Noise Barrier 9. Surveys for marsh arrow grass would be conducted in Summer 2019. Should marsh arrow grass be found during the survey, then a protection, transplanting, and/or propagation program would be developed in consultation with NYSDEC at that time. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the marsh arrow grass for the Community Grid Alternative.

OHIO GOLDENROD

The State-listed Threatened Ohio goldenrod has been recorded by NYNHP in the vicinity of the I-481 East Study Area. However, Ohio goldenrod was not found during targeted surveys for this species in the I-481 East Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the Ohio goldenrod for the Community Grid Alternative.

TROUBLESOME SEDGE

As described above, the State-listed Threatened troublesome sedge has been recorded by NYNHP in vicinity of the I-481 North Study Area. However, troublesome sedge was not found during targeted surveys for this species in the I-481 North Study Area. Therefore, NYSDOT has made a preliminary effect determination of “take not likely” for the troublesome sedge for the Viaduct Alternative.

E. CONCLUSIONS

Considering the limitation of tree removal to the winter hibernation period of Indiana bats and only within 100 feet of existing roads, the distances to nearest bat roost trees or other records of the pertinent listed species, the suitability (or lack thereof) of habitat for each species in the Study Areas, and the various avoidance mitigation measures detailed above, NYSDOT has made the “not likely to take” effect determinations for the Viaduct Alternative and Community Grid Alternative.
F. LITERATURE CITED

New York Natural Heritage Program (NYNHP). 2016. Correspondence from Nicholas Conrad, NYNHP to Aubrey McMahon, AKRF. Re: NYSDOT Interstate 81 Viaduct Project (dated July 1, 2016.)

New York Natural Heritage Program (NYNHP). Database Search Results Conducted by NYSDOT on January 22, 2018.

I-81 Viaduct Project

Assessment of State Listed Threatened or Endangered Species

I-81 Viaduct Project Evaluation of State Listed Threatened or Endangered Species

G. LIST OF PREPARERS

The Biological Evaluation was prepared by Chad Seewagen, Ph.D., Technical Director and Senior Wildlife Biologist at AKRF Inc., with additional contributions from Aubrey McMahon, Technical Director/Certified Arborist at AKRF, Inc.

Dr. Seewagen is a primary resource at AKRF for diverse projects relating to wildlife and threatened and endangered species, as well as other natural resources. He has 15 years of experience working as a professional wildlife biologist in the Northeast, and has a strong working knowledge of the region’s Federally and state-listed species, including both terrestrial and aquatic organisms. At AKRF he often conducts targeted surveys for threatened and endangered species, and frequently prepares Endangered Species Act Section 7 Biological Evaluations and similar impact assessments. Dr. Seewagen has prepared several Section 7 Biological Evaluations and Biological Assessments for Indiana and northern long-eared bats, each of which has received concurrence with their determinations by USFWS.

Ms. McMahon is a primary plant ecologist at AKRF, Inc. for projects related to plants and trees including threatened and endangered species. She has 15 years of experience working as a plant ecologist in New York. At AKRF, she often conducts targeted surveys for threatened and endangered plants. Ms. McMahon has conducted numerous plant species surveys where listed individuals or populations of plants have been identified in the field. As part of her survey work, she has prepared documentation regarding her findings as well as numerous plant species transplanting and protection plans. Ms. McMahon has also supervised maintenance crews during the transplanting and/or care of listed plants that she has identified in the field.

H. ATTACHMENTS

Attachment 1: I-81 Viaduct Project General Project Figures J-5-1-1 through J-5-1-9

Attachment 2: I-81 Viaduct Project I-81 DEIS Appendix J-6 – U.S. Fish and Wildlife Service Information for Planning and Consultation System (IPaC) Official Species Lists
Attachment 3: I-81 Viaduct Project Tree Removal Figures (Figures J-5-3-1 through J-5-3-14)
Viaduct Alternative Overview:

Colvin Street to Butternut Street

New path would be built along west bank of Colvin Street.

West St. overpass would be removed. The interchange would be reconstructed and reconfigured.

New partial interchange at MLK, Jr. East

No connections between Almond St. and Cedar or Madison St.

Almond St. would be reconstructed with bicycle and pedestrian enhancements.

Crouse Ave. would be converted from a one-way to a two-way street between Genesee St. and Adams St.

Wider structure would be closer to adjacent buildings.

New interchange posted speed limit would be 55 mph (currently posted at 45 mph)

New West St./Franklin St. and Clinton St./Salina St. off-ramps would be replaced.

New ramp connecting southbound I-690 to northbound I-81

New off-ramp at Catherine St. connecting westbound I-690 to Downtown/University Hill — would replace existing connection on Townsend St.

New ramp connecting with a single on-ramp at Pearl St.

New off-ramp at Catherine St. connecting westbound I-690 to downtown/University Hill would replace existing connection on Townsend St.

Ramp from northbound I-690 to southbound I-81 would provide a right-side to left-side exit, introducing a weaving movement for traffic.

New off-ramp at Pearl St. and Butternut St. would be replaced with a single off-ramp at Pearl St.

See Figure 3-1 for Butternut to Bear Streets

West St. would be lowered to meet Genesee St., creating a new intersection.

New interchange at Colvin St. would be reconstructed with two lanes.

New on-ramp at Almond St.

Ramp from northbound I-690 to southbound I-81 would provide a right-side to left-side exit, introducing a weaving movement for traffic.

New interchange at Colvin St. would be reconstructed with two lanes.

New partial interchange at RLC, S. East

Reconstruct Harrison St. off-ramp with two lanes reconstructed with two lanes.

Existing West St./Franklin St. and Clinton St./Salina St. off-ramps would be replaced with a single off-ramp at Clinton St.

New off-ramp at Catherine St. connecting westbound I-690 to Downtown/University Hill would replace existing connection on Townsend St.

New interchange posted speed limit would be 55 mph (currently posted at 45 mph)

New West St./Franklin St. and Clinton St./Salina St. off-ramps would be replaced.

New ramp connecting with a single on-ramp at Pearl St.

New off-ramp at Pearl St. and Butternut St. would be replaced with a single off-ramp at Pearl St.
Hiawatha Blvd sidewalk, sidewalks on each side, curbside parking where possible, street trees, and curb

New Spencer St. bridge with sidewalks on each side

New location of southbound I-81 off-ramp to connect to N. Clinton St.

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

New Cochrane Overpass would be removed to accommodate the widened I-81. Access to properties along Genant St. would be maintained by Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Bear Street to Hiawatha Boulevard

Butternut Street to Bear Street

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of northbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

Section of butternut St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Bear Street to Hiawatha Boulevard

Butternut Street to Bear Street

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New North Ave bridge with new sidewalks on each side

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.

Northbound I-81 on-ramp would be made larger, making it easier for traffic to merge

New location of southbound I-81 on- and off-ramps connecting to N. Clinton St.

Section of Genant Dr. south of Bear St. would be removed to accommodate the widened I-81. Access to properties along Genant Dr. would be maintained from N. Clinton St.

New location of southbound I-81 on- and off-ramps would connect to N. Clinton St.
Viaduct Alternative Proposed Noise Barriers

Project: I-81 Viaduct Project
Date: 7/13/2018
Location: City of Syracuse, Onondaga County, New York

Source: Watts Architecture & Engineering

Legend:
- Proposed Noise Barrier

Sources:
- Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China
- Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community, Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community

*Note: Some areas of Downtown Syracuse are shown as excluded from the study area due to their distance from the involved roadways.
Community Grid Alternative
Proposed Improvements
Attachment 1 - Figure J-4-1-5

I-81 Viaduct Project

Reconstruct interchange to direct I-81 traffic to the new I-81 (former I-481) North Interchange

Existing I-81, between I-690 and existing I-481 would be renamed BL 81

The new I-81 (former I-481) would vary from four to seven lanes in this section to accommodate traffic demand

Make improvements to re-routed I-81, as needed From I-690 to I-90

Traffic calming measures such as narrow shoulders, curbs and landscaping, would be introduced between Colvin Street entrance ramp to BL 81 and MLK, Jr. East to encourage motorists to reduce speeds from 55 mph to 30 mph

Reconstruct interchange to direct I-81 traffic to the new I-81 (former I-481) South Interchange

Add new I-81 signage and renumber interchanges as needed

Onondaga County
Oneida Lake

Central Study Area
I-481 North Study Area
I-481 East Study Area
Syracuse

I-481 South Study Area

BL 81
I-81
Detail enlarged on subsequent figure
The new I-81 (former I-481) between the Kirkville Rd and I-90 interchanges would be widened from two lanes to three lanes in the northbound direction; southbound direction would remain two lanes.

The new I-81 (former I-481) between the I-690 and Kirkville Rd interchanges would be widened from two lanes to three lanes in both the northbound and southbound directions (for a total of six lanes).
Northern Blvd. and S. Bay Rd. would continue to be State Route 481. The ramps would be reconstructed, and existing ramps would remain.

Existing I-481 would be re-designated as I-81. Business Loop 81 would merge/diverge with I-81 via high speed ramps. The interchange would be reconfigured so that I-81 would be two lanes in each direction. Speed limit would be 65 mph.

Existing I-481, south of new I-81, would be re-designated as the Business Loop 81.

The Community Grid Alternative for the North Interchange of the New I-81 (formerly I-481) is shown on the map. The new I-81 would be two lanes in each direction, with a speed limit of 65 mph.
Existing I-81 would be de-designated as an interstate and renamed Business Loop 81 (BL 81).

East Glen Avenue, relocated here, would connect to BL 81 and Brighton Avenue.

Current East Glen Avenue location.

New Brighton Avenue bridge.

Existing I-481 would be re-designated as I-81.

New interchange would provide full access between BL 81 and East Glen Avenue.

Northbound I-81 ramp would be reconfigured to provide access to BL 81 and to Brighton Avenue via the new interchange at East Glen Avenue.

Southbound BL 81 would merge with southbound I-81 here.

I-81 would be two lanes in each direction, with a 65 mph speed limit.

Ramps to/from Rock Cut Road would remain.

Southbound BL 81 would merge with southbound I-81 here.

Legend
- Interstate
- Business Loop 81
- New Ramps
- New Road

Community Grid Alternative
South Interchange of the New I-81 (formerly I-481)
Attachment 1 - Figure J-4-1-8
Figure 6.4.6-2: Community Grid Alternative

Proposed Noise Barriers

Source: Watts Architecture & Engineering

Legend:

TNM Barrier Modeling Areas

Project Location

Date: 7/13/2018

Project Study Area Limits

Downtown Exclusion Areas*

Abatement Study Areas

Existing Noise Barrier

Noise Barrier Recommended

Noise Barrier Not Recommended

Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China

* Note: Some areas of Downtown Syracuse are shown as excluded from the study area due to their distance from the involved roadways.

Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community, © OpenStreetMap contributors, and the GIS user community

Community Grid Alternative
Proposed Noise Barriers
Attachment 1 - Figure J-4-1-9

I-81 Viaduct Project
Appendix J-4 Attachment 2

I-81 Viaduct Project
I-81 DEIS Appendix J-6 – U.S. Fish and Wildlife Service
Information for Planning and Consultation System (IPaC) Official Species Lists
Central Study Area
-USFWS IPAC Database Results (September 13, 2018)
-Central Study Area (proper)
In Reply Refer To: September 13, 2018
Consultation Code: 05E1NY00-2018-SLI-0914
Event Code: 05E1NY00-2018-E-10123
Project Name: I81 (Central Study Area)

Subject: Updated list of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 et seq.). This list can also be used to determine whether listed species may be present for projects without federal agency involvement. New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list.

Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the ESA, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC site at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list. If listed, proposed, or candidate species were identified as potentially occurring in the project area, coordination with our office is encouraged. Information on the steps involved with assessing potential impacts from projects can be found at: http://www.fws.gov/northeast/nyfo/es/section7.htm

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/)
eagle_guidance.html. Additionally, wind energy projects should follow the Services wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the ESA. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office
3817 Luker Road
Cortland, NY 13045-9385
(607) 753-9334
Project Summary

Consultation Code: 05E1NY00-2018-SLI-0914
Event Code: 05E1NY00-2018-E-10123
Project Name: I81 (Central Study Area)
Project Type: TRANSPORTATION
Project Description: VIADUCT ALTERNATIVE and COMMUNITY GRID ALTERNATIVE

Project Location:
Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/43.051596135648296N76.14354454336231W

Counties: Onondaga, NY
Endangered Species Act Species

There is a total of 3 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. **NOAA Fisheries**, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana Bat Myotis sodalis</td>
<td>Endangered</td>
</tr>
<tr>
<td>There is final critical habitat for this species. Your location is outside the critical habitat.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/5949</td>
<td></td>
</tr>
<tr>
<td>Northern Long-eared Bat Myotis septentrionalis</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/9045</td>
<td></td>
</tr>
</tbody>
</table>

Reptiles

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Massasauga (=rattlesnake) Sistrurus catenatus</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/2202</td>
<td></td>
</tr>
</tbody>
</table>

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.
I-481 South Study Area
-USFWS IPAC Official Species List (September 13, 2018)
-I-481 South Study Area (proper)
In Reply Refer To: Consultation Code: 05E1NY00-2018-SLI-0912
Event Code: 05E1NY00-2018-E-10126
Project Name: I81 (South Study Area)

Subject: Updated list of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 et seq.). This list can also be used to determine whether listed species may be present for projects without federal agency involvement. New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list.

Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the ESA, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC site at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list. If listed, proposed, or candidate species were identified as potentially occurring in the project area, coordination with our office is encouraged. Information on the steps involved with assessing potential impacts from projects can be found at: http://www.fws.gov/northeast/nyfo/es/section7.htm

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/)
Additionally, wind energy projects should follow the Services wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the ESA. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office
3817 Luker Road
Cortland, NY 13045-9385
(607) 753-9334
Project Summary

Consultation Code: 05E1NY00-2018-SLI-0912

Event Code: 05E1NY00-2018-E-10126

Project Name: I81 (South Study Area)

Project Type: TRANSPORTATION

Project Description: VIADUCT ALTERNATIVE and COMMUNITY GRID ALTERNATIVE

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/43.00380996176201N76.10770615020965W

Counties: Onondaga, NY
Endangered Species Act Species

There is a total of 4 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana Bat Myotis sodalis</td>
<td>Endangered</td>
</tr>
<tr>
<td>There is final critical habitat for this species. Your location is outside the critical habitat.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/5949</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Long-eared Bat Myotis septentrionalis</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/9045</td>
<td></td>
</tr>
</tbody>
</table>

Reptiles

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Massasauga (=rattlesnake) Sistrurus catenatus</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/2202</td>
<td></td>
</tr>
</tbody>
</table>
Ferns and Allies

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Hart's-tongue Fern Asplenium scolopendrium var. americanum</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/4232</td>
<td></td>
</tr>
<tr>
<td>Species survey guidelines:</td>
<td></td>
</tr>
</tbody>
</table>

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.
I-481 East Study Area
-USFWS IPAC Official Species List (September 13, 2018)
I-481 East Study Area (proper)
In Reply Refer To: September 13, 2018
Consultation Code: 05E1NY00-2018-SLI-0911
Event Code: 05E1NY00-2018-E-10125
Project Name: I-81 (East Study Area)

Subject: Updated list of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project.

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 et seq.). This list can also be used to determine whether listed species may be present for projects without federal agency involvement. New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list.

Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the ESA, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC site at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list. If listed, proposed, or candidate species were identified as potentially occurring in the project area, coordination with our office is encouraged. Information on the steps involved with assessing potential impacts from projects can be found at: http://www.fws.gov/northeast/nyfo/es/section7.htm

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/).
Additionally, wind energy projects should follow the Services wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the ESA. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office
3817 Luker Road
Cortland, NY 13045-9385
(607) 753-9334
Project Summary

Consultation Code: 05E1NY00-2018-SLI-0911

Event Code: 05E1NY00-2018-E-10125

Project Name: I-81 (East Study Area)

Project Type: TRANSPORTATION

Project Description: VIADUCT ALTERNATIVE and COMMUNITY GRID ALTERNATIVE

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/43.07086137934912N76.05313625129938W

Counties: Onondaga, NY
Endangered Species Act Species

There is a total of 3 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. **NOAA Fisheries**, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana Bat Myotis sodalis</td>
<td>Endangered</td>
</tr>
<tr>
<td>There is final critical habitat for this species. Your location is outside the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/5949</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Long-eared Bat Myotis septentrionalis</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045</td>
<td></td>
</tr>
</tbody>
</table>

Reptiles

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Massasauga (=rattlesnake) Sistrurus catenatus</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/2202</td>
<td></td>
</tr>
</tbody>
</table>

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.
I-481 North Study Area
-USFWS IPAC Official Species List (September 13, 2018)
I-481 North Study Area (proper)
In Reply Refer To: September 13, 2018
Consultation Code: 05E1NY00-2018-SLI-0915
Event Code: 05E1NY00-2018-E-10124
Project Name: I81 (North Study Area)

Subject: Updated list of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 et seq.). This list can also be used to determine whether listed species may be present for projects without federal agency involvement. New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list.

Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the ESA, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC site at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list. If listed, proposed, or candidate species were identified as potentially occurring in the project area, coordination with our office is encouraged. Information on the steps involved with assessing potential impacts from projects can be found at: http://www.fws.gov/northeast/nyfo/es/section7.htm

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/).
eagle_guidance.html). Additionally, wind energy projects should follow the Services wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the ESA. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office
3817 Luker Road
Cortland, NY 13045-9385
(607) 753-9334
Project Summary

Consultation Code: 05E1NY00-2018-SLI-0915

Event Code: 05E1NY00-2018-E-10124

Project Name: I81 (North Study Area)

Project Type: TRANSPORTATION

Project Description: VIADUCT ALTERNATIVE and COMMUNITY GRID ALTERNATIVE

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/43.142062556416526N76.10993955518234W

Counties: Onondaga, NY
Endangered Species Act Species

There is a total of 3 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana Bat Myotis sodalis</td>
<td>Endangered</td>
</tr>
<tr>
<td>There is final critical habitat for this species. Your location is outside the critical habitat.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/5949</td>
<td></td>
</tr>
<tr>
<td>Northern Long-eared Bat Myotis septentrionalis</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/9045</td>
<td></td>
</tr>
</tbody>
</table>

Reptiles

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Massasauga (=rattlesnake) Sistrurus catenatus</td>
<td>Threatened</td>
</tr>
<tr>
<td>No critical habitat has been designated for this species.</td>
<td></td>
</tr>
<tr>
<td>Species profile: https://ecos.fws.gov/ecp/species/2202</td>
<td></td>
</tr>
</tbody>
</table>

Critical habitats

There are no critical habitats within your project area under this office's jurisdiction.
Appendix J-4 Attachment 3

I-81 Viaduct Project
Tree Removal Figures
Figures J-4-3-1 through J-4-3-14
Central Study Area
Tree Removal Areas
Viaduct Alternative
Attachment 3 - Figure J-4-3-2
I-81 Viaduct Project

Central Study Area
Tree Removal Areas
Viaduct Alternative
Attachment 3 - Figure J-4-3-3
I-81 Viaduct Project

100-foot Study Area Boundary
Floodplain Forest
Mowed Lawn / Mowed Lawn with Trees
Old Field
Project Limits
Successional Southern Hardwood

I-481 North Study Area
Tree Removal Areas
Viaduct Alternative
Attachment 3 - Figure J-4-3-5
Central Study Area
Tree Removal Areas
Community Grid Alternative
Attachment 3 - Figure J-4-3-7
Roadcut cliff/slope community is located within successional southern hardwood comm.
I-81 Viaduct Project

I-481 South Study Area

Tree Removal Areas

Community Grid Alternative

Attachment 3 - Figure J-4-3-10

Roadcut cliff/slope community is located within successional southern hardwood comm.
I-81 Viaduct Project

I-481 East Study Area
Tree Removal Areas
Community Grid Alternative
Attachment 3 - Figure J-4-3-11
I-81 Viaduct Project

I-481 East Study Area
Tree Removal Areas
Community Grid Alternative
Attachment 3 - Figure J-4-3-12
I-81 Viaduct Project

I-481 East Study Area
Tree Removal Areas
Community Grid Alternative
Attachment 3 - Figure J-4-3-13
I-81 Viaduct Project

I-481 North Study Area
Tree Removal Areas
Community Grid Alternative
Attachment 3 - Figure J-4-3-14

Project Limits
100-foot Study Area Boundary
Floodplain Forest
Successional Shrubland
Successional Southern Hardwood
Mowed Lawn / Mowed Lawn with Trees
Old Field
Ditch
Wetland

0 1,000 FEET