Welcome to the Final Scoping Meeting for the I-81 Viaduct Project. My name is Mark Frechette and I am with the New York State Department of Transportation, serving as the I-81 Viaduct project director. With me tonight are also Joseph Flint, NYSDOT project manager, and Tricia Millington, who is representing the Federal Highway Administration.
In summary, the “needs” that have been identified in the project area that prompted the I-81 Viaduct Project include nonstandard and nonconforming design standards; structural deficiencies; vehicular, pedestrian, and bicyclist mobility and safety concerns; and community visions expressed in local long-range plans. The “purpose” of the I-81 Viaduct Project is to address the structural deficiencies and nonstandard highway features in the I-81 corridor while creating an improved corridor through the City of Syracuse that meets transportation needs and provides the transportation infrastructure to support long-range planning efforts (such as the Syracuse Metropolitan Transportation Council’s Long Range Transportation Plan, and the City of Syracuse’s Comprehensive Plan).
We have conducted a preliminary evaluation of the project alternatives to determine whether they meet the project’s purpose and need, based on the project objectives discussed earlier; whether they would result in a substantial number of building acquisitions; whether they have any unreasonable constructability considerations; and whether they would have a reasonable cost. We have also taken into account public comments during scoping.

The Draft Scoping Report evaluates the advantages and disadvantages of each project alternative to determine whether it would “pass” or “fail” the preliminary evaluation. During this presentation, I will provide a summary of the screening results and explain why we believe some alternatives “fail” the screening—and therefore we recommend that they not be studied any further—and why others “pass”—the evaluation. We recommend that those that pass be studied in greater detail.

We need to look more closely at the alternatives’ potential property impacts and consider preliminary traffic analysis, as well as environmental considerations. We will also look at comments from the public during the scoping comment period.
NEPA requires investigation of a No Build Alternative to assess future conditions if the project does not get implemented and to provide a baseline that is used to determine potential affects of the “Build” alternatives. The No Build Alternative would not meet any objectives or the purpose and need of the project, but since it is required by federal environmental laws, it will be evaluated in the EIS.
V-1: Rehabilitation would be a long-term program of substantial capital investment to keep the existing I-81 in a state-of-good repair. This approach would keep I-81 structurally safe, but NYSDOT would not add shoulders, enlarge medians, fix the weaving lanes, or implement other safety or operational improvements. As a result, Rehabilitation would retain many nonstandard and nonconforming design features. The cost of the Rehabilitation is approximately $800 M.

Therefore, Rehabilitation would not meet the purpose and need of the project, and fails the evaluation.
V-2: New Viaduct Fully Improved to Current Standards would reconstruct the I-81 viaduct between MLK East and Spencer Street, with potential improvements farther north to Hiawatha Boulevard, as well as along I-690 between West Street and Teall Avenue. The new viaduct would have two travel lanes in each direction and operate at a 55 MPH speed limit. To accommodate current design standards, as well as features such as shoulders and medians, the viaduct would be wider than the existing viaduct. As shown on this slide, the new viaduct would be about 82 feet wide; the current viaduct is about 66 feet wide. At this time, we expect to acquire approximately 30 to 40 buildings to construct Alternative V-2.

The new viaduct could be the same height as the existing viaduct, or it could be about 5 to 10 feet taller. The cost of V-2 is estimated at $1.438 B.

Because this alternative would improve structural and geometric design features; allow for enhanced vehicular, bicycle, and pedestrian connectivity on surface streets adjacent and under the viaduct; be able to be constructed with reasonable and typical engineering practices; and would have a reasonable cost in line with other project alternatives, it passes this level of screening and is recommended to be carried forward for further study.
V-3: New Viaduct with Substantial Design Improvements is identical to V-2 except at seven locations. By tightening the curves at these seven locations, which are shown in purple, V-3 would have 25 percent fewer real estate impacts than V-2. Vehicles would still be able to travel at 55 mph around the curves. In case of an accident or stranded motorist, emergency vehicles would be able to get to the scene. The cost of V-3 is estimated at $1.423 B.

Like Alternative V-2, Alternative V-3 passes this level of screening as it would improve structural and geometric design features; allow for enhanced vehicular, pedestrian, and bicycle connectivity on surface streets; have reasonable constructability measures; and have a reasonable cost.
V-4: New Viaduct with Considerable Design Improvements is similar to the previous two alternatives, except that this variation would tighten the horizontal curves further on five of the seven curves.

The tighter curves at these seven locations would allow us to reduce the footprint of the viaduct even further, which means approximately 40 percent fewer buildings would need to be acquired under V-4 than would be under V-2.

V-4 would cost approximately $1.419 B.

It passes this level of screening, as it would meet purpose and need through improved structural and geometric design features and enhanced vehicular, pedestrian, and bicycle connectivity; it would have reasonable constructability measures; and it would have a reasonable cost.
V-5: New Stacked Viaduct was developed as a result of a suggestion from a member of the public during the scoping process. As shown on the slide, the new stacked viaduct would separate northbound and southbound traffic on two separate decks. The main advantage is that it would require a narrower footprint. However, with the new roadway designed to meet current design standards, including median and shoulder widths, combined with the support structure, the stacked viaduct’s overall width would be about 55 feet, only about 11 feet narrower than the existing viaduct. The new stacked viaduct would be about 50 feet tall, about 30 feet taller than the existing viaduct. The cost would be $1.588 billion.

The stacked viaduct would be designed to current design standards; enhance vehicular, pedestrian, and bicycle connectivity in some areas; and would not require a substantial number of property acquisitions. However, it would sever access across Almond Street at Genesee Street to allow for a ramp connection between Harrison Street and northbound I-81. Genesee Street is a major east-west roadway between University Hill and Downtown. Since the new stacked viaduct would fail to maintain vehicle connections to, across, and along local streets in the project limits, it is not recommended for further study.
Alternative SL-1 would create a new boulevard along Almond Street. Initial traffic studies indicate that six lanes of traffic are likely to be needed to maintain an efficient flow of traffic between Downtown, University Hill, the Southside, and other neighborhoods. There are many ways to lay out a new boulevard along Almond Street, which in some areas has nearly 200 feet of available space. This is sufficient space to accommodate vehicles, bicycles, pedestrians, wide park-like medians, and other improvements.

The Boulevard would cost approximately $1.047 B.

Alternative SL-1 is recommended for further study.
The next two street-levels alternatives would make improvements to both Almond Street and a combination of other local streets. They differ in that one envisions Almond and other local streets as one-way streets, and the other would make them two-way streets. Because traffic would be routed to other local streets under SL-2 and SL-3, Almond Street would carry fewer than six traffic lanes, which would shorten crosswalks.

Under the **One-Way** Almond Street and Other Local Streets Alternative, Almond Street would be one-way northbound from Harrison Street to the connection with I-690. South of Harrison Street, it would be a two-way street. One or more other streets would be used by southbound traffic, for example, Townsend Street or Clinton Street, as shown in the diagram.

Under the **Two-Way** Almond Street and Other Local Streets Alternative, Almond Street and one or more other streets would both serve two-way traffic.

Alternatives SL-2 and SL-3 would each cost about $1.067 Billion. Both are recommended for further study.
All street-level alternatives would route some traffic to I-481, which would be designated as the new I-81. Therefore, all of them would require improvements to I-481.

At this time, it looks like no building acquisitions are needed to make these improvements to I-481, which would basically consist of adding traffic lanes at three stretches of the highway—as you can see here—and reconstructing the two existing I-81/I-481 interchanges. These interchanges would be slightly enlarged to fully meet today’s design standards.
The first two tunnels would run along Almond Street and differ primarily in their length.

One would build the underground highway from Martin Luther King East—formerly known as Castle Street—to Butternut Street, a distance of about two miles; this tunnel would cost approximately $2.651 billion. The other would build a tunnel from MLK East to East Genesee Street, about one mile, and cost about $1.761 B.

A surface street on top of the tunnel would serve local traffic.

There are two important concerns with a tunnel on Almond Street. First, construction of new ramp connections between the tunnel and I-690 would require that a number of local streets be removed or turned into dead-end streets. This would substantially diminish access between Downtown and Northside.

The second concern involves difficult construction practices owing to the conditions below Almond Street. In addition to a high water table and difficult soil conditions, the water underneath Almond Street is saline, which requires special disposal methods, and all subsurface utilities would need to be relocated. Because of these subsurface conditions, cut-and-cover construction would be needed, resulting in a lengthy construction period. Therefore the viaduct and Almond Street would need to be closed to traffic for much of the duration of construction.

For these reasons, the Almond Street tunnels are not considered reasonable, and NYSDOT recommends that they not advance for further study in the DEIS.
We explored a tunnel under Townsend Street to see if we could avoid some of the issues that were associated with an Almond Street tunnel—for example, could we keep I-81 open during construction? This tunnel would cost about $2.643 B.

We found that cut-and-cover construction would still be required, and although the existing viaduct could be kept open to traffic during construction, the Townsend Street tunnel would require substantial building acquisitions along the full length of the new tunnel.

For these reasons, the Townsend Street tunnel is not considered reasonable, and it “fails” to advance to the DEIS.
Finally, we looked at a tunnel concept that was suggested by a member of the public that would place I-81 in a new tunnel approximately one mile east of the existing highway. The tunnel would be a minimum of 81 feet below the surface where it could be bored through bedrock. Its only interchanges would be with I-481 (at the southern end), I-690, and the former I-81 at Bear Street. The Teall Avenue interchange on I-690 would be eliminated.

The viaduct could remain in place during construction of the Tunnel on Eastern Alignment, and there would be opportunities to reconstruct and enhance Almond Street. However, the Eastern Alignment tunnel would affect part of Lincoln Park and could result in many property acquisitions in the area near its new interchange with I-690.

This tunnel would cost about $3.298 B—one billion more than other alternatives that we considered.

The Tunnel on Eastern Alignment is not considered reasonable.
These alternatives would create a sunken highway about 25 feet below surface. Several overpasses, at key locations, would be built over this depressed highway to provide connections; otherwise, it would be open to the sky on top.

The depressed highways would be designed to fully meet today’s standards. The longer depressed highway would cost about $1.751 B, and the shorter one would cost about $1.503 B.

The depressed highways would each have ramp connections to I-690. To construct these ramps, we would need to sever several streets where they currently cross Almond Street.

The subsurface conditions along Almond Street are not favorable for construction of a depressed highway. There is a high water table and soil conditions are difficult. The water is saline, which—as mentioned earlier—requires special disposal methods, and all subsurface utilities would need to be relocated. The viaduct and Almond Street would need to be closed for much of the duration of construction.

For these reasons, we believe that the depressed highways are not reasonable.
Finally, we looked at two concepts that would reroute I-81 to the west of the current highway.

The first would be a Western Bypass, an idea that emerged during the I-81 corridor study. The bypass would consist of a new highway that would travel around western Syracuse. Once that is built, we would remove the existing highway through Downtown.

The Western Bypass would cost about $2.446 B. It require that we buy a substantial amount of land for the new highway. We estimate that somewhere between 70 and 200 acres of land would be needed, depending on the route of the new highway. This land would include the acquisition of several homes and businesses, which could result in the removal of more than 100 buildings. For this reason, we do not think the Western Bypass is reasonable.

The second concept is a new highway along West Street, and it would cost about $1.326 billion. This concept was presented in the corridor study, and it also was raised by a member of the public, who called it the Salt City Circuit. The West Street concept would route I-81 along West Street to I-690. The existing section of I-81 between the railroad and I-690 would be replaced by a boulevard or surface street. The West Street concept would require new right-of-way, including properties on both sides of West Street, which could include 70 to 90 buildings. It would diminish local access in the West Street area, which would be very disruptive to the community during and after construction. For these reasons, the West Street concept is not considered reasonable.
I have described the 17 different ideas that we have developed, and our recommendation on the alternatives that we should study in more detail. In summary, NYSDOT recommends that the No Build Alternative; Alternatives V-2, V-3, and V-4, which would build a new viaduct; and Alternatives SL-1, SL-2, and SL-3, which would replace the highway with a street-level roadway, be studied further.

Please be aware that we continue to investigate these alternatives, as well as their potential effects on the social, environmental, and economic vitality of the area. We also want to hear your input on these recommendations, and those recommended for elimination. Our Final Scoping Report will make the final recommendation of the alternatives that should be studied in the EIS, and those that should be eliminated.

<table>
<thead>
<tr>
<th>Summary of Recommendations</th>
<th>Alternatives to Advance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Build</td>
<td></td>
</tr>
<tr>
<td>V-2: New Viaduct Fully Improved to Current Standards</td>
<td>V-4: New Viaduct with Considerable Design Improvements</td>
</tr>
<tr>
<td>V-3: New Viaduct with Substantial Design Improvements</td>
<td>SL-1: Boulevard</td>
</tr>
<tr>
<td></td>
<td>SL-2: One-way Traffic on Almond Street and Other Local Street(s)</td>
</tr>
<tr>
<td></td>
<td>SL-3: Two-way Traffic on Almond Street and Other Local Street(s)</td>
</tr>
</tbody>
</table>
For more information, please visit us at the project website, i81opportunities.org. The website will be continually updated throughout the entire project. Thank you for coming tonight, and thank you for your interest in the I-81 Viaduct Project.