Welcome. My name is Mark Frechette.

I am the project director for the New York State Department of Transportation’s (NYSDOT) I-81 Viaduct Project.

Thank you for being here tonight.

The project team has been working hard and we are excited to present the concepts we are exploring to rebuild or replace the viaduct through downtown Syracuse.

After the presentation, you will be given the opportunity to speak to members of the project team out in the lobby. You also can provide written comments there or on the project website.
We will begin with some background information on the project.

We will then talk about why we have developed a variety of ideas for the project and why it is important to study them.

Next, we will walk you through those ideas – known as alternatives.

Finally, we will wrap up with next steps.
We are at the beginning of a formal, very detailed environmental review that will help determine how best to address the deficiencies of the viaduct, which was built in downtown Syracuse 50 years ago.

The viaduct has deteriorated and does not meet today’s standards. The need to address these deficiencies gives us an opportunity to investigate solutions for I-81 in Syracuse.

To make that decision, we must go through a process that all of our projects undergo to ensure that state and federal funds that finance them will be well spent.

State and federal environmental regulations require NYSDOT and the Federal Highway Administration (FHWA) to conduct a comprehensive review of any project that would significantly affect the quality of the human environment. The I-81 Viaduct Project falls into that category.

The required review is documented in an Environmental Impact Statement (EIS), which will consider a range of reasonable alternatives, analyze their potential impacts, and comply with state and federal laws.

It’s a comprehensive process that requires a great deal of engineering, environmental analysis, and public participation.
This environmental review is separate from the I-81 Corridor Study, a planning study completed last spring by NYSDOT and the Syracuse Metropolitan Transportation Committee.

That study was a broad analysis of 12 miles of the interstate, providing a foundation for understanding multiple issues along the entire corridor.

The study identified improving the 1.4-mile viaduct as the top priority. It suggested considering a number of replacement concepts for that elevated highway, but the ideas were not studied in detail.
The environmental review for the viaduct project officially started August 26 when the notice of intent to prepare an Environmental Impact Statement was published in the Federal Register.

Since then, NYSDOT and its Project Team have been working to develop a number of concepts for the I-81 Viaduct.

DOT has held public meetings as part of the initial phase of the environmental review called “scoping.” The scoping process involves the public and other affected federal, state, and local agencies. Its purpose is to identify the major issues and reasonable project alternatives to be considered during the environmental review.

DOT held five neighborhood meetings and the initial scoping meeting (which was attended by more than 400 people in November) to help inform people about the project and the process.
We will follow up on today’s meetings with a final scoping meeting where we will share more detailed information about the concepts and recommend which ones should be advanced for further study in the Draft EIS.

After that, a draft EIS will be developed and put out for public comment.

Ultimately, a final EIS will be completed and the FHWA will issue a Record of Decision about the alternative that was selected to move forward.
Public participation is critical throughout the EIS process.

DOT has received hundreds of comments and ideas from the public and receives more every day.

We have created two stakeholders’ advisory working groups made up of nearly 80 people from a wide cross-section of the community. Their first meeting was in April. They provide us with very focused and in-depth feedback, which is difficult to get in a large public meeting.

Working group members are encouraged to share those discussions with the public.

We’re also developing a project stakeholders’ committee, which will be open to all members of the public who wish to participate.

This public input provides valuable information that will help NYSDOT and the FHWA in their decision-making about this project.
An EIS starts with identifying the purpose and need of a project.

We are proposing to rebuild or replace I-81 for a few reasons.

- The existing I-81 viaduct—by *viaduct* I mean “elevated highway”—was built in the 1960s, and highway design standards have changed since then. As you know, some sections of the highway become congested and do not have shoulders, medians, or other safety enhancements, which affect traffic when there is an accident or disabled vehicle.

- Because of its age, there are sections of I-81 that do not meet technical standards that the Federal Highway Administration and the New York State Department of Transportation have developed for highways.

- Many of the bridges on I-81 are quite old. While the Department works very hard to maintain these bridges so that they are safe, many of them should be replaced in the next few years.

- Finally, I-81 is a prominent feature in Syracuse, and it passes directly through several neighborhoods. In addition to exploring opportunities to rebuild or replace the highway, we are looking at ways to enhance the aesthetic quality of the area and to improve local street connections for drivers, bicyclists, and pedestrians.
The project has two goals:

- Improve safety and create and efficient regional and local transportation system through greater Syracuse; and
- Provide transportation solutions that enhance the livability, sustainability, and economic vitality of greater Syracuse

These goals guide us in developing alternatives for the project.
This slide shows all of the alternatives currently under consideration. We have studied the no build, viaduct, tunnel, street level, depressed highway, and other alternatives and multiple variations of each.

Some of these alternatives came from the public during the I-81 Corridor Study or during the scoping phase. It is important to note that some of these alternatives will not make it past the scoping phase.
First, we have the No Build Alternative. The No Build Alternative is a very important part of the environmental process. It is investigated to identify the potential benefits and environmental impacts of other alternatives.

It is important to know that the No Build Alternative does not meet the purpose and need of the project, but the federal environmental laws require that we study the No Build Alternative as a baseline to assess the effects of the other alternatives.
Next, we will look at the five options that deal with fixing or rebuilding the viaduct.

DOT would look to upgrade the bridge in approximately the same location and look to provide enhancements to the highway and bridge network.
Rehabilitation would be a long-term program of substantial capital investment to keep the existing I-81 in a state-of-good repair. It would keep I-81 structurally safe, but we would not add shoulders, enlarge medians, change the weaving lanes, or implement other safety or operational improvements.
The next three viaduct option would demolish the existing I-81 viaduct and build a new viaduct in essentially the same location. It would improve the viaduct to current standards which are different from the standards 50 years ago. Examples of today’s standards include ten-foot right shoulders, four-foot left shoulders, and the ability to accommodate 55 mph speeds.

The existing photo in the upper left hand corner was taken on Almond Street between Adams and Harrison Streets. The pink structure that is superimposed is the existing viaduct. The new viaduct would be approximately twenty feet wider in this section to meet today’s highway standards.
As the viaduct moves north toward I-690, the bridge section becomes more complicated. The existing photo at the top would be between East Genesee and Cedar Street. The ramps shown would address access to and from I-690 and would not as quickly as they do now. Additional auxiliary lanes would be added to improve traffic flow and safety.

The viaduct could remain at the same height or be five to ten feet higher.
This is a bird’s-eye view of the interchange between I-81 and I-690. Currently, this interchange is missing two direct connections between the interstates: I-690 EB to I-81 NB and I-81 SB to I-690 WB. All of these viaduct options would create these new interstate-to-interstate connections and would rebuild many of the I-690 bridges in this interchange.

To build this interchange to today’s standards, there would be substantial property impacts, due to the proximity of the buildings to the interstate system.
In addition to rebuilding the viaduct, we would look at ways to enhance connections to local streets beneath or parallel to the highway. DOT would also look at ways to improve the appearance of the new viaduct--by using different structure types and lighting.
The next two variations of the viaduct alternative were looked at to reduce the number of property impacts associated with the new viaduct built to standards. By tightening the curves at the eight locations shown in purple, we would be able to reduce the real estate impacts by approximately 25% over the last option. Vehicles would still be able to travel at 55 mph around the curves. In case of an accident or stranded motorist, emergency vehicles would be able to get to the scene.
The third new viaduct option is a further variation of the last one. This version would tighten the horizontal curves to a point where the speed at the five orange locations would be 50 mph.

The tighter curves at these 8 locations would allow us to reduce the footprint of the interchange even further, which would decrease the number of buildings that we would need to acquire by approximately 40% of the viaduct option fully improved to standards (V-2).
The last of the viaduct ideas is a stacked viaduct, and it was proposed by a member of the public during the scoping process. As you can see here, the stacked viaduct would separate northbound and southbound I-81 on two separate decks atop a local street. To meet today’s standards, we would need to make each deck about 55 feet wide. This is only slightly smaller than the existing viaduct. However, because the lanes are stacked, the viaduct would be about 25 feet taller than the existing structure.

The stacked viaduct would include a full interchange between I-81 and I-690. However, it would not provide access to Harrison/Adams Street from the top deck of the new viaduct.

The cost of these five viaduct options would range from 800 million dollars to 1.6 billion dollars.
Now we get to the street-level solutions, which you might also know as the at grade or boulevard.

We have three street-level concepts. All would demolish the existing I-81 viaduct, which would be decommissioned as an interstate, and make improvements to I-481, which would be re-designated as I-81. They would fully meet today’s design standards. Like the new viaducts, the street-level solutions would reconstruct the I-81/I-690 interchange, providing connections in all directions.

The first street-level idea would replace the viaduct with a boulevard along Almond Street. The second and third street-level ideas would use Almond Street and a combination of one or more local streets to carry traffic. These last two approaches may have the benefit of dispersing traffic through the city.
Initial traffic studies indicate that six lanes of traffic are likely to be needed to maintain an efficient flow of traffic between Downtown, University Hill, the Southside, and other neighborhoods. There are many ways to lay out a new boulevard along Almond Street, which in some areas is nearly 200 feet wide. This is sufficient space to accommodate vehicles, bicycles, pedestrians, wide park-like medians, and other improvements.
Heading north into the city, the highway would remain on a bridge to cross over the railroad tracks at Van Buren Street, then descend to surface around Monroe Street, where the boulevard would begin. This descent would result in a change to Jackson Street: it would not be able to carry through traffic across Almond Street.
The boulevard would end at Erie Boulevard or around McBride Street.

We are also exploring ways to connect I-690 to West Street and, on the north end, how best to connect the elevated I-81/I-690 interchange to the street-level roadway. We will develop more details on these concepts and present them at our upcoming Final Scoping Meeting.
The next two street-level solutions would make improvements to both Almond Street and a combination of other local streets. They differ in that one envisions Almond and other local streets as one-way streets, and the other would make them two-way streets. Because traffic would be routed to other local streets, Almond Street would carry fewer than six traffic lanes, which would shorten crosswalks.

Under the **One-Way** Almond Street and Other Local Streets, Almond Street would be one-way northbound from Harrison Street to the connection with I-690. South of Harrison Street, it would be a two-way street. Another street would be used by southbound traffic, for example, Townsend Street or Clinton Street, as shown in the diagram.
The **Two-Way** solution is the same as the One-Way solution except it would keep traffic running in both directions on local streets.

Other local streets also could be considered as part of both of these solutions—for example, University Avenue, State Street, or West Street, etc. These streets would also be enhanced as part of the project.

The street-level solutions would potentially require us to acquire some buildings but fewer than would be required by the new viaduct solutions.
All street-level solutions would route some traffic to I-481. Therefore, all of them would require improvements to I-481, which would be designated as the new I-81.

At this time, it looks like no building acquisitions are needed to make these improvements to I-481, which would basically consist of adding auxiliary lanes at three stretches of the highway—as you can see here—and reconstructing the two existing I-81/I-481 interchanges. These interchanges would be slightly enlarged to fully meet today’s standards for a 65 MPH speed limit.

The street-level solutions would cost from 1.0 billion dollars to 1.2 billion dollars.
We are also looking at four tunnel solutions: two below Almond Street, along the existing footprint of the I-81 viaduct; one west of the viaduct and one east of the viaduct.

All the tunnel solutions would fully meet today's design standards.
The first two tunnel solutions run along Almond Street and differ primarily in their length.

One would build the underground highway from Martin Luther King East—formerly known as Castle Street—to Butternut Street, a distance of about two miles.

The other solution would build a tunnel from MLK East to East Genesee Street, about 1 mile.
The viaduct would be demolished before the tunnel is built. Traffic would be carried in the tunnel as well as on a reconstructed Almond Street above the tunnel.

The Almond Street tunnel concepts would sever several local streets near the I-690 interchange. What that means is that five roads would dead-end at the interchange: Fayette, Washington, Water, Townsend, and McBride Streets. Traffic on these streets would need to detour to nearby streets such as East Genesee, Erie, Burnet, State, and Almond.
Cut-and-cover construction would be required to build these tunnels because of soil conditions and a high groundwater table under Almond Street, as well as the need to treat and dispose of saline water. This type of construction could be potentially disruptive to the community.
The tunnel under Townsend Street was an idea brought up to avoid some of the issues that were associated with an Almond Street tunnel. The Townsend Street tunnel would also allow us to keep I-81 open during construction.

However, we found that cut-and-cover construction would still be required, and although the existing viaduct could be kept open to traffic during construction, the Townsend Street tunnel would require property acquisitions.
Finally, we looked at a tunnel solution that was suggested by a member of the public. This solution would place I-81 in a new tunnel approximately one mile east of the existing highway. The tunnel would be a minimum of 81 feet below the surface where it could be bored through bedrock. Its only interchanges would be with I-481, I-690, and the former I-81 at Bear Street. The Teall Avenue interchange would be eliminated under this alternative.

The viaduct could remain in place during construction of the Tunnel on Eastern Alignment, and there would be opportunities to reconstruct and enhance Almond Street. However, the Eastern Alignment tunnel would affect part of Lincoln Park and could result in many property acquisitions in the area near its new interchange with I-690.

The costs of the different tunnel options range from 1.7 billion dollars to 3.3 billion dollars.
We also looked at two depressed highway solutions: from Adams to Butternut—about 1¼ miles long—and from Adams to East Genesee, approximately a half-mile long.
These solutions would create a sunken, or depressed, highway, about 25 feet below surface. Several overpasses, at key locations, would be built over this depressed highway to provide connections; otherwise, it would be open to the sky on top.

The depressed highways would be designed to fully meet today’s standards.

In terms of features, the depressed highways are similar to the tunnels, although they would not provide as much open space at the surface.
Both depressed highways also would sever traffic on Fayette, Washington, Water, Willow, and McBride as the highway approaches the I-690 interchange. Jackson Street, on the southern side of the highway, would become a dead end.

Costs for these depressed highway solutions range from 1.5 billion dollars to 1.9 billion dollars.
Finally, we looked at two concepts that would reroute I-81 to the west of the current highway.

The first option would be a western bypass. The idea of a western bypass emerged during the I-81 corridor study. It would be a new highway that would travel around the western side of Syracuse. Once that is built, we would remove the existing highway through Downtown.

The second concept is a new highway along West Street. This concept was presented in the corridor study, and it also was raised by a member of the public, who called it the Salt City Circuit. The West Street concept would route I-81 along the New York and Susquehanna Railroad property line to West Street and then up West Street to I-690. The existing section of I-81 between the railroad and I-690 would be replaced by a boulevard or surface street.

Costs for these solutions range from 1.2 billion dollars to 2.2 billion dollars.
Our next step is to evaluate the alternatives to determine which ones will advance to the Draft EIS for further study and which ones will be dropped.

We will screen the alternatives using three criteria:

1) Does the alternative meet the project’s purpose and need? That is, does the alternative correct the problems of the existing highway? Are there opportunities to better serve the neighborhoods on either side of it?

2) How would the alternative be constructed? Do we need to acquire property? How long will construction take?

3) Is the cost reasonable?
Thank you for attending today’s presentation. For more information on the project, please visit our website at www.I81opportunities.org. Please check the website frequently since we will be adding information over the next couple of weeks. I look forward to seeing you at our Final Scoping Meeting.