Freight Data and Analysis in the New Millennium

presentation for

Data Needs in the Changing World of Logistics and Freight Transportation

George List
Rensselaer Polytechnic Institute
November 14, 2001
Goals for the Conference

• Primary
 – Research recommendations for TRB, FHWA, and BTS
 – Priorities and strategies for improved data collection
 – Better use of available analysis tools

• Secondary
 – Overview of freight transportation and its regional impact
 – Availability of regional and national data
 – Data requirements to support policy makers
 – Existing and future analytical and forecasting capabilities
 – New actions and strategies to obtain data and enhance analysis
Lessons Learned #1 – NYC Freight Arteries

- Goal: Freight-related investments
- Steps
 - Estimate flows
 - Identify investments
- Network
 - 43,000 links (86,000 arcs), 26,000 nodes
 - 3 link classes (allowed, restricted, prohibited)
 - 3 link attributes: travel time, length, generalized cost
- Zones
 - 410 truck zones (160,000 OD pairs)
 - Based on 3600 “auto” zones
- Flow projections
 - Total daily flows
 - One truck type
The network is huge
Data are very sparse

- 4500 OD flow observations
 - Surveys
 - Prior studies
- 820 originating or terminating observations
 - Estimates based on employment
- 350 arc volume observations
 - Observations
 - Estimates based on link data (e.g., AADT’s)
- 120 screenline observations
 - Observations from traffic counts

5790 observations for predicting 160,000 flows!!

Implication: lots of OD matrices are possible!!
But you can match the observed data
And project reasonable flows
And assess capacity needs
But more data would really be valuable

- Link volumes (24 hour, truck class, truck type, loaded/unloaded, commodity)
- Trips (origin, destination, frequency, commodity)
- Network status (capacity, operational configuration, maintenance status)
Lessons Learned #2 – Peace Bridge

- ITS investments
- Benefit projections
- Simulation
We could collect the data

- **Arrival rates**
 - Empty/monthly/in-transit (33%)
 - C4 (39%)
 - Other (28%)

- **Primary inspection**

- **Primary failure rates**
 - Empty/monthly/in-transit (~0%)
 - C4 (~0%)
 - Other (~89%)

- **Secondary inspection**
And we did get results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Sys-90</th>
<th>Sys-Avg</th>
<th>Pri-90</th>
<th>Pri-Avg</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>2217.0</td>
<td>810.1</td>
<td>511.7</td>
<td>278.5</td>
<td>98</td>
</tr>
<tr>
<td>Low</td>
<td>613.0</td>
<td>388.9</td>
<td>418.0</td>
<td>218.5</td>
<td>30</td>
</tr>
<tr>
<td>High</td>
<td>392.3</td>
<td>353.8</td>
<td>280.7</td>
<td>160.9</td>
<td>31</td>
</tr>
</tbody>
</table>
That showed substantial benefits.
But data collection was tedious

- Inputs needed
 - Volumes
 - Service times
 - Inspection/toll booth operating plan

- Sources
 - Standing in the inspection booths
 - Watching videotapes
 - Processing databases from the deployment test
Lessons Learned #3 – Air Cargo

- Assess market penetration in air cargo
- For Nanjing-Lukou International Airport
We could build an international network
And a local network

[Diagram showing network connections between cities like Lukou, Nanjing-Shanghai Economic Region, Wuxi, Suzhou, Shanghai, and Pudong, with arrows indicating directions and shipments.]
And predict market penetration
But data assembly was a huge effort

- No single source of data was available
- The data for flows was very difficult to analyze
- Very little, if any information existed about flights and flight patterns
- And there was almost no information about carrier operating plans

Asiana Airlines will inaugurate SEL/NKG DIRECT 74F ON 16MAY twice a week. Now, you can transport your cargo safer and faster between SEOUL and NANJING related with present SEL/SHA flight.

1. SEL→NKG FLIGHT SCHEDULE FLIGHTER NBR ETD ETA DAY A/C TYPE OZ389 08:30 09:40 3 B74F OZ389 09:35 10:45 7 B74F
2. NKG→SEL FLIGHT SCHEDULE FLIGHTER NBR ETD ETA DAY A/C TYPE OZ390 11:40 14:40 3 B74F OZ390 12:45 15:45 7 B74F
Where’s the hope?

- Transportation informatics
- Smart vehicles (GPS, transponders, etc.)
- Smart facilities
- IT-equipped packages and travelers
- Ubiquitous, wireless IT network
- Robust, highly distributed command and control systems
- On-line and off-line tied-in planning and control systems
What can we conclude?

- Research recommendations for TRB, FHWA, and BTS
 - Better understand why the data are needed
 - Develop new sensors, wireless communication networks
 - Radically different, IT based data collection techniques
- Priorities and strategies for improved data collection
 - Partner with the MPO’s, Customs, etc.
 - Highly distributed, highly coordinated effort
 - Get into the E-Business
- Better use of available analysis tools
 - Capacity investment decision making
 - Network security assurance
 - Design guidelines
What can we conclude?

- Availability of regional and national data
 - Presently poor, more is needed, capitalize on ITS
- Data requirements to support policy makers
 - Flows, volumes, capacities, operational restrictions
- Existing and future analytical and forecasting capabilities
 - Capacity investments, real-time flow management, network robustness
- New actions and strategies to obtain data and enhance analysis
 - Sensors, instrumentation, wireless communications, E-Business