Montana Department of Transportation

Rail, Transit & Planning
Data & Statistics Bureau

Data & Statistics Bureau Chief
Ed Smith
60002

Traffic Data Collection Supervisor
Rebecca Duke
26016

Electronic Equipment Unit Supervisor
Ted Little
13013

Electronic Repair Technologist
John Adams
26060

Electronic Repair Technologist
Randall Herbst
26002

Electronic Repair Technologist
John McDougall
26042

Traffic Technician
Vacant
26061

Traffic Technician
Diana Hardie
26004

Traffic Technician
Vacant
26003

Computer Systems Analyst
Don Wark
26036

Transportation Planner
Marie Stump
05021

Transportation Planner
Peter Jerstad
05012

Transportation Planner
Brittany Crawford
26068

Transportation Planner
Roy Fair
26034

Transportation Planner
Vacant
26049

Transportation Planner
Vacant
26067

Transportation Planner
Vacant
26007

Transportation Planner
Marisa Malland
33212

Transportation Planner
Vacant
26035

Transportation Planner
Vacant
26005

Transportation Planner
Wayne Rowan
26070

Transportation Planner
Brittney Engebretson
26056

Geospatial Information Section
Brian Anderson
33513

Transportation Planner
Kris Larson
26002

Transportation Planner
Vicki Prebil
33211
HPMS Annual Process

* Dates are approximate

• Jan. 1 – 14:
 • TIS/LRS - QA/QC, validations and prep for freezing previous year’s data
 • Finish any remaining HPMS Sample inventory, resolve miscellaneous issues from previous year

• Jan. 15 – 19:
 • Make adjustments to Samples due to realignments and changes to TOPS

• Jan. 20 - 22:
 • Create HPMS “Road Log”

• Jan. 23 - 24:
 • Create HPMS LRS

• Jan. 25 - 28:
 • Create Dual Carriageways and associated attributes

• Jan. 29 - 31:
 • Create Bridge file

• Feb. 1 - 9:
 • Pavement data process
HPMS Annual Process

* Dates are approximate

• Feb. 10 – 18:
 • Load LRS, TOPS (not AADT), Bridge, Surface Type, and Pavement Data Items into HPMS software

• Feb. 19 – 28:
 • Run HPMS validations and resolve any issues

• Feb. 28 - 31:
 • Run PRC, calculate Good, Fair, Poor percentages and provide to performance management staff

• Mar. 1 - 13:
 • Request datasets from other areas (Signals, Urban, Pavement Metadata, Traffic Activity & Metadata)

• Mar. 14 - 26:
 • Create and submit files to HPMS Software, run validations, resolve any issues

• Mar. 27 – Apr. 5:
 • Pavement and County summaries

• Apr. 6 – Apr. 14:
 • Field Manual and software edits
HPMS Annual Process

* Dates are approximate

• Apr. 15 – 30:
 • Create and submit remaining (non-Traffic) files to HPMS Software, run validations, resolve any issues

• May 1 – 15:
 • Traffic Data process, metadata and validations.

• May 16 – 26:
 • Resolve any remaining submittal or validation issues

• May 27 – 31:
 • Certified Mileage (due June 1st)

• June 1 - 15:
 • Resolve any remaining submittal or validation issues

• June 15 - 26:
 • Sample adequacy, create new samples as needed

• June 27 - 30:
 • Provide new sample locations to Traffic and Pavement data units
HPMS Annual Process

* Dates are approximate

• Jul. 1 – 11:
 • Run HPMS year-end report, post and share

• Jul. 12 – 20:
 • Update SDE and AGOL with latest samples

• August:
 • Review and respond to FHWA’s initial data review comments

• September - October:
 • Sample Inventory – Roadway Images, Field collection, GIS analyses (curve/grade)
 • HIS in DC

• November:
 • Finish Sample Inventory and FHWA’s annual review

• December:
 • Respond to FHWA’s annual review comments
 • Make any needed adjustments to processes, etc. for upcoming year.
 • Prep for upcoming year (create new folders on share drive, etc.)
HPMS Sample Inventory – Roadway Images

HPMS Data Collection via PathView II - Use the PathView II handout for instructions on how to use the PathView II software.

Open the Corridor you are wanting to collect inventory data on. CO00001 is used in this example.

This road section represents the predominant characteristics of the HPMS sample so most of the data items can be collected at this point.

1. Lane Width = 12’ (measure tool)
2. Median Type = 1 (none)
3. Median Width = 0
4. Shoulder Type = 7 (Barrier curb exists, no shoulder)
5. Right Shldr Width = 0
6. Left Shldr Width = 0
7. The intersection on the right would be coded as an "at-grade other"
8. There is one intersection with Signal near the end of the sample – Signal Type and Percent Green are obtained from Traffic Engineering (when in urban)
9. If this was in an urban area (it’s not) the Turn Lane Left would = 3 (continuous, exclusive left turn lane)
10. If this was in an urban area (it’s not) the Turn Lane Right would = 5 (turns permitted, no exclusive right turn lane)
11. If this was in an urban area (it’s not) the Peak Parking would = 3 (no parking allowed or none available)
12. Terrain Type = 1 (level)
13. Widening Potential = 9
14. Widening Obstacles = X (none)
15. Percent Pass Sight required for two-lane only
HPMS Sample Field Inventory – Collector for ArcGIS
Ed Ereth
Data & Statistics Bureau
Montana DOT

eereth@mt.gov
406.444.6111