CONSTRUCTION SUPPORT FOR SUPERSTRUCTURE DEMOLITION AND REHABILITATION OF FOUR I-90 DECK ARCH BRIDGES IN SILVER CREEK, NY

Statewide Conference on Local Bridges
November 6, 2014
Joshua T. Rodems, EIT
Project Background

- 2 Twin span thruway bridges: Silver Creek, NY (Region 5)
- Feature Carried: I-90
- Feature Crossed: Silver Creek and Walnut Creek
- Structure Type: Reinforced concrete deck arch with transverse floorbeams, 3 spans: center arch span with 2 approach spans
- Length: 133’-0” clear span (arch), 285’-8” (total)
- Width: 56’-7” out-to-out, 51’-0” curb-to-curb
Project Background

• Year Built: 1954
• 1988: Replaced bridge rail with concrete barrier
• 1993: Concrete repairs, scupper removal, joint replacement
• Traffic: 2 lanes
• Original Design Live Load: HS 20
Project Location
Project Location

Silver Creek Structures

Walnut Creek Structures
Project Team

• Owner:
 New York State Thruway Authority (NYSTA)

• Engineer:
 HNTB

• General Contractor:
 Cold Spring Construction Co.

• Construction Support Engineer:
 Erdman Anthony
Project Background

- Last inspected in July 2011
- Rating performed by HNTB in April 2012
- Existing concrete deck rated poorly (HS 13 - 24.7 tons). Replace concrete deck.
- Existing floorbeams act as true T-beams. Removing deck slab would compromise compression flange. Replace transverse floorbeams (with precast).
- Existing spandrel columns and arch satisfactory. Class D concrete repairs as necessary. Replace center 4 short spandrel columns.
Damaged Deck Slab
Erdman Anthony Scope

- Demolition Calculations
- Erection Procedure with drawings for floorbeams
- Calculations supporting Erection Procedure
- General construction support
- Ensure overall structural integrity
Plan

PHASE 2
I-90 WB

PHASE 1
I-90 EB

I-90 EB
STAGE 2
APPROACH
SPAN

STAGE 1
1 SPAN

STAGE 2
APPROACH
SPAN

Deck slab and floorbeams to be replaced

Existing arch and spandrel columns to remain

SECTION A-A (See Layout Plan)
PROFILE ALONG WEST BOUND ROADWAY
Section – Arch Span

Typical Spandrel Columns
Section – Approach Span

Typical Half Transverse Section thru Approach Spans

Note: Reinforcement not shown except in columns.

Symmetrical about 8 of Knall, except for elevations of foundations.
Construction Equipment

- Walk-behind diamond blade wet saw
- Caterpillar 304C Excavator
- Caterpillar 328D Excavator
- Link-Belt HSL 238 150-ton Crawler Crane (2)
- Liebherr LTM 1200 250-ton Hydraulic Crane
- Grove GMK5275 275-ton Hydraulic Crane
Demolition Procedure

- Transition all traffic onto single bridge
- Remove bridge overlay
- Remove concrete barriers
- Deck slab demolition – arch span (symmetrical)
- Floorbeam demolition – arch span
- Erect 12 new arch span floorbeams
- Approach span demo similar
Restrictions

- No construction live load on overhangs
- Transverse sawcuts in deck 2” in from edge of floorbeam
- No longitudinal sawcuts over floorbeams
- Reactions based on excavator at maximum lift capacity
- Excavator will be located precisely to minimize bending in deck
- Crane mats for crawler cranes, excavator as needed
- Exterior lanes on existing bridge are adequate for 4 lanes of traffic, post-tension floorbeams as required (HNTB)
Existing Floorbeam PT
Tasks

- Determine max pick weight for excavator
- Determine limitations for excavator position
- Determine crane locations
- Design crane mats and outrigger pads
- Design rigging for floorbeams
- Perform surcharge analysis (crane on approaches)
Saw Cut & Slab Demo

LONGITUDINAL SECTION ON THE O.GRADE LINE
Scale: 1" = 1'-0"
Photos – Slab Demo
Excavator Load
Excavator Location

1. EXC. TRACKS LONGITUDINAL - MAX PICK OVER TOES

ENVELOPE

\[M^+_{\text{MAX}} = 184.05 \text{ K-ft} \quad > \quad 155.42 \text{ K-ft (NG)} \]

\[M^-_{\text{MAX}} = 110.72 \text{ K-ft} \quad > \quad 81.71 \text{ K-ft (NG)} \]
Excavator Location

STEP 25: EXC. LIFT OVER TOES

MAX

CL Floorbeam

8’-0”

CG Excavator

\[M = 8.48 \text{ kFt} < 155.42 \text{ kFt} \text{ (OK)} \]

\[-M = 38.73 \text{ kFt} < 81.21 \text{ kFt} \text{ (OK)} \]
Demolition

Barrier and Slab – Arch Span

2 Lanes West Bound

2 Lanes East Bound
Demolition

Floorbeams – Arch Span

2 Lanes West Bound

2 Lanes East Bound
Floorbeam Removal
Erection Procedure

Arch Span:

• Deliver precast floorbeams on adjacent bridge.

• Lift floorbeams:
 – Center 4 Arch span floorbeams: 2 Hydraulic Cranes in tandem
 – Floorbeams 5 and 6: Single pick with Hydraulic Crane
 – Remaining 6 arch span floorbeams: Single pick with Crawler Crane
Erection

Floorbeams – Arch Span: Dual Crane Picks

EB Lane 1 - Temp. closure during erection (1-2 min)
EB Lane 2 - Fully closed for delivery

2 Lanes West Bound

250-ton Hydraulic Crane

275-ton Hydraulic Crane
Erection

Floorbeams – Arch Span: Single Crane Picks

EB Lane 1 - Temp. closure during erection (1-2 min)

2 Lanes West Bound

EB Lane 2 - Fully closed for delivery

250-ton Hydraulic Crane

275-ton Hydraulic Crane
Floorbeams – Arch Span: Single Crane Picks

EB Lane 1 - Temp. closure during erection (1-2 min)

EB Lane 2 - Fully closed for delivery

2 Lanes West Bound

150-ton Crawler Crane

150-ton Crawler Crane
Floorbeam Erection
Demolition

Slab and Floorbeams – Approach Spans

2 Lanes West Bound

2 Lanes East Bound

Crane mats on column lines
Slab and Floorbeams – Approach Spans

2 Lanes West Bound

2 Lanes East Bound

Crane mats on column lines
Floorbeam Removal
Q: Why was special attention paid to the method of demolition for the deck and transverse floorbeams?

A: A majority of the spandrel columns and the entire arch were to remain in place and were required to be undamaged.
Q: Why were the slab sections that were being removed limited to a certain size?

A1: Tipping capacity of the excavator.

A2: Reaction under excavator tracks cannot cause a failure in the deck slab or floorbeams.

(2 parts)
Q: Why were the floorbeams and slab analyzed for the maximum lift load for the excavator and not just the weight of the slab section being removed?

A: To be conservative in the analysis and to avoid overstressing the deck floorbeams.
Q: Why was the Crawler Crane placed on the column lines for the approach span work?
A: To reduce bending forces in the floorbeams. (Transfers reaction right to columns)
Q: Why were crane mats used under the tracks of the crawler cranes?

A: To span between the floorbeams and avoid overstressing the deck slab.
“You don’t wanna know.”

- Cold Spring PM Jeff Younger when asked exactly how they plan to remove the deck slab sections from the bridge.
Thank You

Joshua T. Rodems, EIT
Structural Engineer
Erdman Anthony
rodemsj@erdmananthony.com