New York is developing plans to strengthen our world-class rail system by providing residents, businesses and travelers with high-speed passenger rail within the Empire Corridor. This service will give the state a strategic advantage in creating jobs, protecting our environment and stimulating economic growth. Travelers and businesses will be attracted by fast, frequent, reliable and comfortable passenger rail service. Adding to the appeal are anticipated improvements in on-time performance and reliability resulting from investments in this 463-mile rail corridor between New York City and Niagara Falls.

With help from the public and key stakeholders, the NYSDOT project team has analyzed what it would take to make the train trip between NYC and Niagara Falls take less time and what it would cost to speed up the travel. The project team also figured out how full the trains would be, how many new trains could be added, and what all those benefits would give the public and at what cost.
All the alternatives that are being evaluated by the project team are summarized in the table to the right.

These activities – which take place as part of a federally required Tier 1 Environmental Impact Statement or EIS – make good business sense. The EIS, when completed in 2012, will document the state’s research, public input, technical analysis and decision making so that residents understand how high-speed rail decisions were reached. In the process, the document will become a strategic plan for delivering reliable and environmentally sustainable high-speed rail service.

With completion of the project nearing, the project team wants to share its information and analysis with New Yorkers. Interested members of the public and stakeholder groups are encouraged to visit the project website which is in the process of being updated with the latest project information. The project website provides new opportunities for learning about - and commenting on – the project’s progress to date. Please visit the website on a regular basis to examine details and tell us what you think. We have more work to do. Help us understand your vision for the future of high speed rail in New York State.

Schedule:

- **Public Hearings**
 - Spring 2012

- **EPAC Briefing on Draft EIS**
 - Winter 2012

- **Distribute Draft EIS**
 - Spring 2012

- **Complete Draft EIS**
 - Ongoing
The graphic illustrates the alternatives evaluation process.

Alternatives Being Evaluated

The Base (no build) alternative includes currently planned improvements in the Empire Corridor. These improvements would occur, regardless of the results of the Tier 1 EIS and are used as a baseline, or comparison alternative, to the other alternatives. A few examples of these projects include the following: New Intermodal Transportation Center in Niagara Falls, ADA improvements at the Buffalo-Depew Station, station improvements at Schenectady and track, signal and grade crossing improvements throughout the corridor. Nine initial build alternatives, operating at six different maximum authorized speeds (MAS) including 79, 90, 110, 125, 160 and 220 miles per hour (mph), were developed. While the speeds may seem strange, they correlate to changes and improvements that would be required to meet Federal Railroad Administration track standards.

- **“79 mph Series”** – Represents current limit on CSX Empire Corridor West based on Federal Railroad Administration (FRA) regulations and existing signal system.
- **“90 mph Series”** – Would be the next step up in track standards (also requires an advanced train control system).
- **110 mph** – Another step up in track standards (current top speed along dedicated track between Hudson-Albany/Rensselaer and Schenectady).
- **125 mph** – The first speed threshold for electrified operation and the performance benefits achieved through electrically-powered trains.
- **160 mph** – Practical upper limit of electrical dynamic tilt trains, such as the Amtrak Acela, that provide faster operating speeds on curves.
- **220 mph** – Practical upper limit of world-class high speed rail operations such as those in France, Germany, Spain, Japan and China

The chart on the next page summarizes the alternative components at different speeds. Learn more about the comparison of cost, ridership, trip time, and more between the Base (no build) and other alternatives by visiting the project website.

How are the alternatives being evaluated?

Currently, members of the project team are evaluating the pros and cons of the various alternatives and your comments are an important piece of this process. We have completed the initial environmental, operations and ridership analyses to answer some of your main questions for each of the alternatives, such as:

- How will it affect our communities?
- How will it affect our environment?
- How much will it cost?
- How long will the trip take?
- How many passengers will ride the train?
- How many trains will be in service?
- How fast will the train travel?
What is the status of the Tier 1 EIS Document?

As part of the alternatives analysis discussed above, the project team is evaluating impacts to the natural and man-made environment. The results of this analysis will be documented in the Tier 1 EIS, which will be available for review early in 2012. The project team has documented the existing conditions—identifying the resources that could be impacted by the alternatives (acres of wetlands, locations of parks, or community facilities, etc.) along the corridor. The Tier 1 EIS focuses on a high level constraints analysis, identifying potential areas for detailed evaluation in the Tier 2 analyses.

Summary of Alternatives Developed

<table>
<thead>
<tr>
<th>Alternative Components</th>
<th>BA</th>
<th>79A</th>
<th>79B</th>
<th>79C</th>
<th>90A</th>
<th>90B</th>
<th>110</th>
<th>125</th>
<th>160</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Authorized Speed (MPH)</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>90</td>
<td>90</td>
<td>110</td>
<td>125</td>
<td>160</td>
<td>220</td>
</tr>
<tr>
<td>Base Alternative Projects</td>
<td>✓</td>
</tr>
<tr>
<td>New Sidings</td>
<td>✓</td>
</tr>
<tr>
<td>Station Improvements</td>
<td>✓</td>
</tr>
<tr>
<td>New Service</td>
<td>✓</td>
</tr>
<tr>
<td>New Dedicated Main Track</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Grade Crossing Improvements</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Advanced Train Control System</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Additional Right-of-Way within Existing Corridor</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Corridor & Right-of-Way/ Electrified</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminate Grade Crossings</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Elements of Each Alternative:

The four build alternatives with the most potential for meeting the project goals are now being further evaluated by their physical and operational characteristics, trip time, on-time performance, ridership, revenue, estimated capital cost, and operations and maintenance costs as well as potential for impacting the environment and public input.

• Operational Improvements
 o Maximum Authorized Speed (MAS)
 o Frequency

• Physical Improvements
 o Track
 o Signals
 o Stations
 o Equipment

Performance Measures:

• Operations
 o Trip Time
 o On-Time Performance (OTP)

• Ridership
• Revenues
• Estimated Operation & Maintenance Costs

What is the status of the Tier 1 EIS Document?

As part of the alternatives analysis discussed above, the project team is evaluating impacts to the natural and man-made environment. The results of this analysis will be documented in the Tier 1 EIS, which will be available for review early in 2012. The project team has documented the existing conditions—identifying the resources that could be impacted by the alternatives (acres of wetlands, locations of parks, or community facilities, etc.) along the corridor. The Tier 1 EIS focuses on a high level constraints analysis, identifying potential areas for detailed evaluation in the Tier 2 analyses.

Keep in Touch

Visit the Project Website:
www.dot.ny.gov/Empire-Corridor

Send a Comment:
EmpireCorridor@dot.state.ny.us

Mail a Written Comment:
David Chan
High Speed Rail Project Manager
NYSDOT
50 Wolf Road
Albany, NY 12232

Keep in touch with your local Empire Corridor Project Advisory Committee (EPAC) member. For a list of agencies on the EPAC, visit www.dot.ny.gov/Empire-Corridor/outreach